Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Neuroanat ; 15(3): 173-85, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9797074

RESUMEN

Axonal connections between the amygdala and the hypothalamic paraventricular nucleus were examined by combined anterograde-retrograde tract tracing. Iontophoretic injections of the retrograde tracer Fluorogold were placed in the paraventricular nucleus, and the anterograde tracer PHA-L in the ipsilateral central or medial amygdaloid nuclei. Single and double-label immunohistochemistry were used to detect tracers. Single label anterograde and retrograde tracing suggest limited evidence for direct connections between the central or medial amygdala and the paraventricular nucleus. In general, scattered PHA-L-positive terminals were seen in autonomic subdivisions of the paraventricular nucleus (lateral parvocellular, dorsal parvocellular and ventral medial parvocellular subnuclei) following central or medial amygdaloid nucleus injection. Double-label studies indicate that central and medial amygdaloid nucleus efferents contact paraventricular nucleus-projecting cells in several forebrain nuclei. In the case of central nucleus injections, PHA-L positive fibers occasionally contacted Fluorogold-labeled neurons in the anteromedial, ventromedial and preoptic subnuclei of the bed nucleus of the stria terminalis. Overall, such contacts were quite rare, and did not occur in the bed nucleus of the stria terminalis regions showing greatest innervation by the central amygdaloid nucleus. In contrast, medial amygdala injections resulted in a significantly greater overlap of PHA-L labeling and Fluorogold-labeled neurons, with axosomatic appositions observed in medial divisions of the bed nucleus of the stria terminalis, anterior hypothalamic area and preoptic area. The results provide anatomical evidence that a substantial proportion of amygdaloid connections with hypophysiotrophic paraventricular nucleus neurons are likely multisynaptic, relaying in different subregions of the bed nucleus of the stria terminalis and hypothalamus.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Núcleo Hipotalámico Paraventricular/anatomía & histología , Estilbamidinas , Amígdala del Cerebelo/fisiología , Animales , Colorantes Fluorescentes , Inmunohistoquímica , Masculino , Terminaciones Nerviosas/metabolismo , Terminaciones Nerviosas/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Fitohemaglutininas , Ratas , Ratas Sprague-Dawley
2.
Exp Neurol ; 148(2): 433-43, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9417823

RESUMEN

A prominent role for phagocytic cells in the regenerative response to CNS or PNS injury has been suggested by numerous studies. In the present work we tested whether increasing the presence of phagocytic cells at a spinal cord injury site could enhance the regeneration of sensory axons from cut dorsal roots. Nitrocellulose membranes treated with TGF-beta or coated with microglial cells were cotransplanted with fetal spinal cord tissue into an injured adult rat spinal cord. Cut dorsal roots were apposed to both sides of the nitrocellulose. Four weeks later, animals were sacrificed and spinal cord tissue sections were processed for immunocytochemical detection of calcitonin gene-related peptide (CGRP-ir) to identify regenerated sensory axons. Adjacent sections were processed with the antibody ED-1 or the lectin GSA-B4 for detection of macrophage/microglial cells in association with the regrowing axons. Qualitative and quantitative data indicate a correlation between the pattern and extent of axonal regeneration and the presence of phagocytic cells along the nitrocellulose implant. Axonal regeneration could be experimentally limited by implanting a nitrocellulose strip treated with macrophage inhibitory factor. These results indicate that increasing the presence of activated macrophage/microglial cells at a spinal cord injury site can provide an environment beneficial to the promotion of regeneration of sensory axons, possibly by the release of cytokines and interaction with other nonneuronal cells in the immediate vicinity.


Asunto(s)
Axones/fisiología , Trasplante de Tejido Fetal/fisiología , Macrófagos/fisiología , Microglía/fisiología , Microglía/trasplante , Regeneración Nerviosa/fisiología , Neuronas Aferentes/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiología , Médula Espinal/trasplante , Animales , Animales Recién Nacidos , Biomarcadores , Péptido Relacionado con Gen de Calcitonina/análisis , Células Cultivadas , Colodión , Femenino , Microglía/citología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Raíces Nerviosas Espinales/fisiología , Factor de Crecimiento Transformador beta
3.
Crit Rev Neurobiol ; 10(3-4): 371-94, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8978987

RESUMEN

The hypothalamo-pituitary-adrenocortical (HPA) axis is the primary modulator of the adrenal glucocorticoid stress response. Activation of this axis occurs by way of a discrete set of neurons in the hypothalamic paraventricular nucleus (PVN). The PVN neuron appears to be affected by multiple sources, including (1) brainstem aminergic/peptidergic afferents; (2) blood-borne information; (3) indirect input from limbic system-associated regions, including the prefrontal cortex, hippocampus, and amygdala; and (4) local-circuit interactions with the preoptic-hypothalamic continuum. Analysis of the literature suggests that different classes of stressor employ different stress circuits. Severe physiologic ("systemic") stress appears to trigger brainstem/circumventricular organ systems that project directly to the paraventricular nucleus. In contrast, stressors requiring interpretation with respect to previous experience ("processive" stressors) reach the PVN by way of multisynaptic limbic pathways. Limbic regions mediating processive stress responses appear to have bisynaptic connections with the PVN, forming intervening connections with preoptic/hypothalamic GABAergic neurons. Stressors of the latter category may thus require interaction with homeostatic information prior to promoting an HPA response. The HPA stress response thus appears to be a product of both the physiologic importance of the stimulus and the specific pathways a given stimulus excites.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Estrés Fisiológico , Hormona Adrenocorticotrópica/fisiología , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Epinefrina/fisiología , Glucocorticoides/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/anatomía & histología , Sistema Hipotálamo-Hipofisario/fisiopatología , Norepinefrina/fisiología , Núcleo Hipotalámico Paraventricular/fisiopatología , Sistema Hipófiso-Suprarrenal/anatomía & histología , Sistema Hipófiso-Suprarrenal/fisiopatología , Serotonina/fisiología , Estrés Fisiológico/fisiopatología , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA