Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 59(10): 1104-1112, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32078293

RESUMEN

Neisseria gonorrhoeae possesses a programmed recombination system that allows the bacteria to alter the major subunit of the type IV pilus, pilin or PilE. An alternate DNA structure known as a guanine quadruplex (G4) is required for pilin antigenic variation (pilin Av). The G-C base pairs within the G4 motif are required for pilin Av, but simple mutation of the loop bases does not affect pilin Av. We show that more substantial changes to the loops, in both size and nucleotide composition, with the core guanines unchanged, decrease or abrogate pilin Av. We investigated why these loop changes might influence the efficiency of pilin Av. RecA is a recombinase required for pilin Av that can bind the pilE G4 in vitro. RecA binds different G4 structures with altered loops with varied affinities. However, changes in RecA binding affinities to the loop mutants do not absolutely correlate with the pilin Av phenotypes. Interestingly, the yeast RecA ortholog, Rad51, also binds the pilE G4 structure with a higher affinity than it binds single-stranded DNA, suggesting that RecA G4 binding is conserved in eukaryotic orthologs. The thermal stability the pilE G4 structure and its loop mutants showed that the parental G4 structure had the highest melting temperature, and the melting temperature of the loop mutants correlated with pilin Av phenotype. These results suggest that the folding kinetics and stability of G4 structures are important for the efficiency of pilin Av.


Asunto(s)
Proteínas Fimbrias/metabolismo , Neisseria gonorrhoeae/genética , Variación Antigénica/genética , Emparejamiento Base/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , G-Cuádruplex , Guanina/metabolismo , Mutación/genética , Neisseria gonorrhoeae/inmunología , Unión Proteica/genética , Recombinación Genética/genética
2.
mSphere ; 4(5)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578246

RESUMEN

Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection.IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.


Asunto(s)
Variación Antigénica , Proteínas Fimbrias/genética , Neisseria gonorrhoeae/genética , Análisis de Secuencia de ADN/métodos , Proteínas Fimbrias/inmunología , Gonorrea/microbiología , Humanos , Programas Informáticos , Células U937
3.
Mol Microbiol ; 112(4): 1219-1234, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31338863

RESUMEN

Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal Av frequencies. Using chromatin immunoprecipitation (ChIP) assays, we show that cellular G4s are less abundant when sRNA transcription is lower. In addition, using ChIP, we demonstrate that the G4-sRNA forms a stable RNA:DNA hybrid (R-loop) with its template strand. However, modulating R-loop levels by controlling RNase HI expression does not alter G4 abundance quantified through ChIP. Since pilin Av frequencies were not altered when modulating R-loop levels by controlling RNase HI expression, we conclude that transcription of the sRNA is necessary, but stable R-loops are not required to promote pilin Av.


Asunto(s)
Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Neisseria gonorrhoeae/genética , Variación Antigénica/genética , Fimbrias Bacterianas/metabolismo , Conversión Génica/genética , Gonorrea/genética , Neisseria gonorrhoeae/metabolismo , Estructuras R-Loop/genética , ARN/metabolismo , Estabilidad del ARN/genética , Recombinación Genética/genética
4.
J Bacteriol ; 201(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30988037

RESUMEN

The major subunit of the type IV pilus (T4p) of Neisseria gonorrhoeae undergoes antigenic variation (AV) dependent on a guanine quadruplex (G4) DNA structure located upstream of the pilin gene. Since the presence of G4 DNA induces genome instability in both eukaryotic and prokaryotic chromosomes, we tested whether a double-strand break (DSB) at the site of the pilE G4 sequence could substitute for G4-directed pilin AV. The G4 motif was replaced by an I-SceI cut site, and the cut site was also introduced to locations near the origin of replication and the terminus. Expression of the I-SceI endonuclease from an irrelevant chromosomal site confirmed that the endonuclease functions to induce double-strand breaks at all three locations. No antigenic variants were detected when the G4 was replaced with the I-SceI cut site, but there was a growth defect from having a DSB in the chromosome, and suppressor mutations that were mainly deletions of the cut site and/or the entire pilE gene accumulated. Thus, the pilE G4 does not act to promote pilin AV by generating a DSB but requires either a different type of break, a nick, or more complex interactions with other factors to stimulate this programmed recombination system.IMPORTANCENeisseria gonorrhoeae, the causative agent of gonorrhea, possesses a DNA recombination system to change one of its surface-exposed antigens. This recombination system, known as antigenic variation, uses an alternate DNA structure to initiate variation. The guanine quadruplex DNA structure is known to cause nicks or breaks in DNA; however, much remains unknown about how this structure functions in cells. We show that inducing a break by different means does not allow antigenic variation, indicating that the DNA structure may have a more complicated role.


Asunto(s)
Variación Antigénica , Roturas del ADN de Doble Cadena , Proteínas Fimbrias/inmunología , Neisseria gonorrhoeae/genética , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , ADN Bacteriano/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas/inmunología , G-Cuádruplex , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...