Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Intervalo de año de publicación
1.
Eur J Pharmacol ; 979: 176822, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047965

RESUMEN

BACKGROUND & AIMS: The treatment of cardiovascular diseases (CVD) could greatly benefit from using nitric oxide (NO) donors. This study aimed to investigate the mechanisms of action of NONO2P that contribute to the observed responses in the mesenteric artery. The hypothesis was that NONO2P would have similar pharmacological actions to sodium nitroprusside (SNP) and NO. METHODS: Male Wistar rats were euthanized to isolate the superior mesenteric artery for isometric tension recordings. NO levels were measured using the DAF-FM/DA dye, and cyclic guanosine monophosphate (cGMP) levels were determined using a cGMP-ELISA Kit. RESULTS: NONO2P presented a similar maximum efficacy to SNP. The free radical of NO (NO•) scavengers (PTIO; 100 µM and hydroxocobalamin; 30 µM) and nitroxyl anion (NO-) scavenger (L-cysteine; 3 mM) decreased relaxations promoted by NONO2P. The presence of the specific soluble guanylyl cyclase (sGC) inhibitor (ODQ; 10 µM) nearly abolished the vasorelaxation. The cGMP-dependent protein kinase (PKG) inhibition (KT5823; 1 µM) attenuated the NONO2P relaxant effect. The vasorelaxant response was significantly attenuated by blocking inward rectifying K+ channels (Kir), voltage-operated K+ channels (KV), and large conductance Ca2+-activated K+ channels (BKCa). NONO2P-induced relaxation was attenuated by cyclopiazonic acid (10 µM), indicating that sarcoplasmic reticulum Ca2+-ATPase (SERCA) activation is involved in this relaxation. Moreover, NONO2P increased NO levels in endothelial cells and cGMP production. CONCLUSIONS: NONO2P induces vasorelaxation with the same magnitude as SNP, releasing NO• and NO-. Its vasorelaxant effect involves sGC, PKG, K+ channels opening, and SERCA activation, suggesting its potential as a therapeutic option for CVD.

2.
Hypertension ; 81(7): 1411-1423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686582

RESUMEN

Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.


Asunto(s)
Citocinas , Hipertensión , Humanos , Hipertensión/inmunología , Hipertensión/fisiopatología , Hipertensión/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/fisiopatología , Animales , Endotelio Vascular/fisiopatología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo
3.
Front Physiol ; 14: 1140989, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324378

RESUMEN

Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.

4.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37148218

RESUMEN

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por Citomegalovirus , Hipertensión , Humanos , Citomegalovirus/metabolismo , Transducción de Señal , Infecciones por Citomegalovirus/epidemiología , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Physiol ; 14: 998951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846322

RESUMEN

Piezo1 channel is a sensor for shear-stress in the vasculature. Piezo1 activation induces vasodilation, and its deficiency contributes to vascular disorders, such as hypertension. In this study, we aimed to determine whether Piezo1 channel has a functional role in the dilation of pudendal arteries and corpus cavernosum (CC). For this, male Wistar rats were used, and the relaxation of the pudendal artery and CC was obtained using the Piezo1 activator, Yoda1, in the presence and absence of Dooku (Yoda1 antagonist), GsMTx4 (non-selective mechanosensory channel inhibitor) and L-NAME (nitric oxide synthase inhibitor). In the CC, Yoda1 was also tested in the presence of indomethacin (non-selective COX inhibitor) and tetraethylammonium (TEA, non-selective potassium channel inhibitor). The expression of Piezo1 was confirmed by Western blotting. Our data show that Piezo1 activation leads to the relaxation of the pudendal artery and CC as the chemical activator of Piezo1, Yoda1, relaxed the pudendal artery (47%) and CC (41%). This response was impaired by L-NAME and abolished by Dooku and GsMTx4 in the pudendal artery only. Indomethacin and TEA did not affect the relaxation induced by Yoda1 in the CC. Limited tools to explore this channel prevent further investigation of its underlying mechanisms of action. In conclusion, our data demonstrate that Piezo1 is expressed and induced the relaxation of the pudendal artery and CC. Further studies are necessary to determine its role in penile erection and if erectile dysfunction is associated with Piezo1 deficiency.

6.
Biochem Pharmacol ; 208: 115412, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36632959

RESUMEN

Cardiovascular diseases (CVD) are the number 1 cause of death in the United States and hypertension is a highly prevalent risk factor for CVD. It is estimated that up to 50 % of the hypertensive trait is genetically inherited while the other 50 % is determined by modifiable factors involving lifestyle, behaviors, and the environment. Interestingly, the hypertensive trait is induced or inhibited by epigenetic modifications modulated by modifiable factors. This review focused on the underlying mechanisms of stress, sleep deprivation, obesity and sedentarism as key players for epigenetic modifications contributing to the development of the hypertensive trait and, on the other hand, how epigenetic modifications induced by physical exercise and healthier habits may contribute to overturn and prevent the inheritance of hypertension trait. Furthermore, adversities during gestation and perinatal life also increase the risk for hypertension and CVD later in life, which can perpetuate the inheritance of the hypertensive trait whereas healthier habits during gestation and lactation may counteract fetal programming to improve the cardiovascular health of the progeny. Therefore, it is promising that a healthier lifestyle causes long-lasting epigenetic modifications and is transmitted to the next generation, strengthening the fight against the inheritance of hypertension.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Embarazo , Femenino , Humanos , Epigénesis Genética , Desarrollo Fetal/genética , Hipertensión/genética , Hipertensión/prevención & control , Hipertensión/complicaciones , Obesidad/etiología , Enfermedades Cardiovasculares/complicaciones
7.
Life Sci ; 310: 121079, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243117

RESUMEN

AIMS: Vascular dysfunction is a clinical hallmark of diabetes. While various pathways drive vascular alterations in diabetes, many gaps persist in understanding this process. Heat-shock protein 70 (HSP70) has a long-recognized role in diabetes, but the contributions of HSP70 to the diabetic vasculature remain largely unknown. MAIN METHODS: We determined the systemic and local (aorta) levels of HSP70 in control (CTL) and streptozotocin (STZ)-induced diabetic rats. Functional studies were conducted in a wire myograph in the presence or absence of a pharmacological inhibitor for HSP70 (VER155008). Calcium (Ca2+) dynamics was indirectly evaluated as a function of change in force development in vehicle and VER-treated vessels, as well as in the presence of inhibitors for voltage-dependent and -independent plasmalemmal Ca2+ channels. Furthermore, mimicking the extracellular diabetic environment, we exposed aortic rings to serum from CTL and STZ-induced animals, which contains higher levels of HSP70, as well as to purified recombinant HSP70. Then, we performed functional studies following the modulation of Toll-like receptor 4 (TLR4) and its co-adaptor MD2, which interact with HSP70. KEY FINDINGS: HSP70 plays a dual role in diabetes-induced vascular dysfunction: intracellular (i)HSP70 affects Ca2+ handling mechanisms, and extracellular (e)HSP70 modulates the TLR4-MD2 complex. SIGNIFICANCE: These newly discovered roles of HSP70 push forward the field of vascular biology and open research avenues for other diseased states associated with altered vascular responses.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animales , Ratas , Calcio , Proteínas HSP70 de Choque Térmico/metabolismo , Estreptozocina , Receptor Toll-Like 4/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232616

RESUMEN

This study was designed to connect aortic stiffness to vascular contraction in young male and female Wistar rats. We hypothesized that female animals display reduced intrinsic media-layer stiffness, which associates with improved vascular function. Atomic force microscopy (AFM)-based nanoindentation analysis was used to derive stiffness (Young's modulus) in biaxially (i.e., longitudinal and circumferential) unloaded aortic rings. Reactivity studies compatible with uniaxial loading (i.e., circumferential) were used to assess vascular responses to a selective α1 adrenergic receptor agonist in the presence or absence of extracellular calcium. Elastin and collagen levels were indirectly evaluated with fluorescence microscopy and a picrosirius red staining kit, respectively. We report that male and female Wistar rats display similar AFM-derived aortic media-layer stiffness, even though female animals withstand higher aortic intima-media thickness-to-diameter ratio than males. Female animals also present reduced phenylephrine-induced aortic force development in concentration-response and time-force curves. Specifically, we observed impaired force displacement in both parts of the contraction curve (Aphasic and Atonic) in experiments conducted with and without extracellular calcium. Additionally, collagen levels were lower in female animals without significant elastin content and fragmentation changes. In summary, sex-related functional differences in isolated aortas appear to be related to dissimilarities in the dynamics of vascular reactivity and extracellular matrix composition rather than a direct response to a shift in intrinsic media-layer stiffness.


Asunto(s)
Elastina , Rigidez Vascular , Agonistas Adrenérgicos , Animales , Calcio , Grosor Intima-Media Carotídeo , Colágeno , Femenino , Masculino , Fenilefrina/farmacología , Ratas , Ratas Wistar
9.
Biomolecules ; 12(8)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36009019

RESUMEN

Aging impairs the expression of HSP70, an emergent player in vascular biology. However, it is unknown if age-related alterations in HSP70 are linked to a decline in arterial function. In this study, we test the hypothesis that the contributions of HSP70 to vascular contraction are diminished in middle-aged animals. We determined the basal levels of HSP70 in the aorta of young and middle-aged Sprague Dawley male rats using Western blotting. Functional studies were performed in a wire myograph system. Force development in response to phenylephrine was assessed in the presence or absence of extracellular calcium (Ca2+), and in aortic rings treated or non-treated with an HSP70 inhibitor. Fluorescent probes were used to evaluate vascular oxidative stress and nitric oxide levels. We report that middle-aged rats have significantly lower levels of HSP70. Blockade of HSP70 attenuated vascular phasic and tonic contraction in isolated aortas. It appears that a functional HSP70 is required for proper Ca2+ handling as inhibition of this protein led to reduced force-displacement in response to Ca2+ dynamics. Furthermore, middle-aged aortic rings exposed to the HSP70 inhibitor display higher reactive oxygen species levels without changes in nitric oxide. In summary, we show that middle-aged animals have lower levels of HSP70 in aortas, which associates with an age-related decline in vascular responses to α-1 adrenergic stimulation.


Asunto(s)
Aorta , Óxido Nítrico , Animales , Aorta/metabolismo , Proteínas HSP70 de Choque Térmico , Masculino , Óxido Nítrico/metabolismo , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley
10.
Urol Oncol ; 40(8): 366-371, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33563538

RESUMEN

Sexual dysfunction (SD) is widely reported by cancer survivors. However, this is an issue underestimated by doctors and the contribution of anticancer therapies for the development of SD in cancer survivors is understudied and poorly understood. Sexual function involves the activation of a neurovascular system that leads to penile erection in males and clitoral engorgement in females. Anticancer therapies can cause damage to the neurovascular circuit responsible for normal sexual function and thus, individual or combined therapies could play a role in the development of SD in all types of cancer survivors and not only those affected by genital cancers. In this review, the pathophysiology of SD and possible mechanisms underlying SD induced by anticancer therapies will be discussed. The effects of chemotherapy, radiotherapy and surgical interventions on the vasculature and nerves as well as their effects on sex hormones and inflammatory processes could link the biological effects of these interventions with SD. In conclusion, this review reports evidence that, despite psychological aspects and the disease itself, anticancer therapies are able to induce direct and indirect effects in males and females that could lead to SD in cancer survivors even after the end of the treatment.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Disfunciones Sexuales Fisiológicas , Femenino , Humanos , Enfermedad Iatrogénica , Masculino , Neoplasias/complicaciones , Neoplasias/terapia , Disfunciones Sexuales Fisiológicas/etiología
11.
Life Sci ; 289: 120237, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922942

RESUMEN

Tadalafil, a phosphodiesterase-5 (PDE5) inhibitor, shown to exert a protection to heart failure (HF) associated damage or lower urinary tract symptoms (LUTS). Thus, we investigated the contribution of tadalafil chronic treatment in the alterations of LUTS in HF rats. Male rats were subjected to aortocaval fistula model for HF induction. Echocardiography, cystometric, renal function and redox cell balance, as well as concentration-response curves to carbachol, KCl, ATP and frequency-response curves to electrical field stimulation (EFS) were evaluated in Sham, HF, Tadalafil and HF-Tadalafil (12 weeks endpoint) groups. HF group to present increased in left-ventricle (LV) mass and in LV end-diastolic- and LV end-systolic volume, with a decreased ejection fraction. Tadalafil treatment was able to decrease in hypertrophy and improve the LV function restoring cardiac function. For micturition function (in vivo), HF animals shown an increase in basal pressure, threshold pressure, no-voiding contractions and decreased bladder capacity, being that the tadalafil treatment restored the cystometric parameters. Contractile mechanism response (in vitro) to carbachol, KCl, ATP and EFS in the detrusor muscles (DM) were increased in the HF group, when compared to Sham group. However, tadalafil treatment restored the DM hypercontractility in the HF animals. Moreover, renal function as well as the oxidative mechanism was impaired in the HF animals, and the tadalafil treatment improved all renal and oxidative parameters in HF group. Our data shown that tadalafil has potential as multi-therapeutic drug and may be used as a pharmacological strategy for the treatment of cardiovascular, renal and urinary dysfunctions associated with HF.


Asunto(s)
Insuficiencia Cardíaca , Riñón , Síntomas del Sistema Urinario Inferior , Tadalafilo/farmacología , Vejiga Urinaria , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Riñón/metabolismo , Riñón/fisiopatología , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/metabolismo , Síntomas del Sistema Urinario Inferior/fisiopatología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología
12.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769116

RESUMEN

People living with hypertension have a higher risk of developing heart diseases, and hypertension remains a top cause of mortality. In hypertension, some detrimental changes occur in the arterial wall, which include physiological and biochemical changes. Furthermore, this disease is characterized by turbulent blood flow, increased fluid shear stress, remodeling of the blood vessels, and endothelial dysfunction. As a complex disease, hypertension is thought to be caused by an array of factors, its etiology consisting of both environmental and genetic factors. The Mosaic Theory of hypertension states that many factors, including genetics, environment, adaptive, neural, mechanical, and hormonal perturbations are intertwined, leading to increases in blood pressure. Long-term efforts by several investigators have provided invaluable insight into the physiological mechanisms responsible for the pathogenesis of hypertension, and these include increased activity of the sympathetic nervous system, overactivation of the renin-angiotensin-aldosterone system (RAAS), dysfunction of the vascular endothelium, impaired platelet function, thrombogenesis, vascular smooth muscle and cardiac hypertrophy, and altered angiogenesis. Exosomes are extracellular vesicles released by all cells and carry nucleic acids, proteins, lipids, and metabolites into the extracellular environment. They play a role in intercellular communication and are involved in the pathophysiology of diseases. Since the discovery of exosomes in the 1980s, numerous studies have been carried out to understand the biogenesis, composition, and function of exosomes. In this review, we will discuss the role of exosomes as intercellular messengers in hypertension.


Asunto(s)
Comunicación Celular , Exosomas/metabolismo , Hipertensión/metabolismo , Animales , Biomarcadores/metabolismo , Humanos
14.
Front Physiol ; 12: 666696, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967836

RESUMEN

Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.

15.
Circ Res ; 128(7): 969-992, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793333

RESUMEN

Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hipertensión/fisiopatología , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Envejecimiento/fisiología , Envejecimiento Prematuro/fisiopatología , Animales , Muerte Celular , Supervivencia Celular , Senescencia Celular , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Hipertensión/etiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Estrés Mecánico , Respuesta de Proteína Desplegada
16.
Vascul Pharmacol ; 140: 106861, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33845201

RESUMEN

The virus responsible for the coronavirus disease of 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidences suggest that COVID-19 could trigger cardiovascular complications in apparently healthy patients. Coronaviruses are enveloped positive-strand RNA viruses acting as a pathogen-associated molecular pattern (PAMP)/ danger-associated molecular patterns (DAMP). Interestingly, Toll-like receptor (TLR) 3 recognize both PAMPs DAMPs and is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-ß (TRIF) dependent pathway. New evidence has shown a link between virus dsRNA and increased BP. Hence, we hypothesize that COVID-19 infection may be over activating the TLR3 through dsRNA, evoking further damage to the patients, leading to vascular inflammation and increased blood pressure, favoring the development of several cardiovascular complications, including hypertension.


Asunto(s)
COVID-19/genética , COVID-19/patología , Hipertensión/genética , ARN Bicatenario/genética , Receptor Toll-Like 3/genética , Animales , Humanos , Hipertensión/patología , Hipertensión/virología , Ratones , SARS-CoV-2/patogenicidad , Transducción de Señal/genética
17.
J Sex Med ; 18(4): 723-731, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33741290

RESUMEN

BACKGROUND: Erectile dysfunction (ED) has been shown to be related with inflammatory markers in humans. Chronic infusion of TNF-α caused ED in mice while TNF-α knockout mice exhibited improvement in the relaxation of the corpus cavernosum (CC). AIM: Since obesity triggers an inflammatory process, we aimed to investigate the hypothesis that in obesity, Toll-like receptor 9 (TLR9) activation leads to increased TNF-α levels and impairment in CC reactivity. METHODS: Four-week old male C57BL6 (WT) and TLR9 mutant (TLR9MUT) mice were fed a standard chow or high fat diet (HFD) for 12 weeks. Body weight and nonfasting blood glucose were analyzed. Contractile and relaxation responses of the CC were evaluated by electrical field stimulation and concentration response curves to phenylephrine and acetylcholine. Protein expression of nNOS, TNF-α, TNF-R1, TLR9 and MyD88 were measured by western blot. Plasma levels of TNF-α were measured by ELISA. OUTCOME: In obesity, impaired cavernosal relaxation is associated with the activation of the innate immune system, by increasing the production of TNF-α through the activation of TLR9 in the macrophages. RESULTS: After 12 weeks of HFD both WT and TLR9MUT mice had increased body weight and nonfasting blood glucose compared to standard chow. In the CC, acetylcholine-induced relaxation was not changed. A trend to increased contraction to phenylephrine and KCl was seen in WT HFD only. electrical field stimulation-induced relaxation of the CC was decreased in WT HFD as well as nNOS expression in the CC of WT HFD, but not in TLR9MUT HFD. In the CC, protein expression of TLR9 and MyD88 was similar in all groups. While circulating levels of TNF-α presented only a trend to increase in mice fed HFD, the CC expression of TNF-α was increased only in WT HFD mice. CLINICAL TRANSLATION: The innate immune system can be a target for the treatment of erectile complications in obesity. STRENGTHS AND LIMITATIONS: This is the first study demonstrating that activation of TLR9 expressed in macrophages leads to impaired cavernosal relaxation. The main limitation of the study is the lack of understanding about the source/expression of the macrophages in the cavernous tissue. Further, herein, the experiments were performed only in isolated cavernous tissue (in vitro), thus the lack of knowledge on how the TLR9 modulates the in vivo response of the erectile tissue is another limitation of this study. CONCLUSION: Our findings indicate that CC dysfunction observed in obesity is at least in part mediated by the production of TNF-α upon activation of TLR9 expressed in the macrophages. Priviero F, Calmasini F, Dela Justina V, et al. Macrophage-Specific Toll Like Receptor 9 (TLR9) Causes Corpus Cavernosum Dysfunction in Mice Fed a High Fat Diet. J Sex Med 2021;18:723-731.


Asunto(s)
Pene/patología , Receptor Toll-Like 9 , Animales , Dieta Alta en Grasa/efectos adversos , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Erección Peniana , Receptor Toll-Like 9/genética
18.
Sci Rep ; 11(1): 1420, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446873

RESUMEN

Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.


Asunto(s)
Aorta/metabolismo , Señalización del Calcio , Calcio/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Vasoconstricción , Animales , Masculino , Ratas , Ratas Sprague-Dawley
19.
Front Aging ; 2: 725884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822017

RESUMEN

Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.

20.
Reproduction ; 161(1): 31-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112284

RESUMEN

Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.


Asunto(s)
Disfunción Eréctil/etiología , Relajación Muscular , Músculo Liso/fisiopatología , Pene/fisiopatología , Receptores de HL/metabolismo , Animales , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Disfunción Eréctil/complicaciones , Disfunción Eréctil/metabolismo , Disfunción Eréctil/fisiopatología , Matriz Extracelular/metabolismo , Femenino , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Pene/citología , Pene/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...