Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(15): 11531-11544, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38323885

RESUMEN

The aqueous solubility of ß-cyclodextrin (ß-CD), a cyclic carbohydrate comprising seven α-D-glucose molecules, is enhanced by 2-hydroxypropyl (2-HP) substitution of the hydroxyl groups at the CD rims. Our thorough analysis of the structural and solvation properties with different degrees of 2-hydroxypropyl substitution on ß-CD using molecular dynamics simulations reveals that the solubility is enhanced at the cost of the structural distortion of the CD cyclic structure. Substitution at the secondary rim predominantly enhances the favourable interactions between CD and water by decreasing CD-CD hydrogen bonding and promoting CD-water hydrogen bonding. However, the effect of substitution at the primary rim on the CD-water interactions is minimal; the hydrogen bonds between water and the primary hydroxyl group in native CD merely get replaced by those between water and 2-HP, since the substitution makes the primary hydroxyl oxygen (O6 atom) inaccessible to water. In contrast, substitution at the primary rim maintains the structural integrity of CD, while substitution at the secondary rim results in structural distortion due to the disruption of the intramolecular hydrogen bond belt, even leading to cavity closure. Certain strategic substitutions of the primary hydroxyl groups can help in the reduction of structural distortion, depending upon the degree of substitution at the secondary hydroxyl rim. A detailed inspection of the simulation trajectory revealed that the tilting of glucose units with the primary hydroxyl oxygen (O6) pointing inward is the primary driver for cavity closure. Even though the dynamics of glucose tilting can influence the kinetics of host-guest complex formation, once the guest is well incorporated into the cavity, glucose tilting is inhibited and the cavity opens up as in native ß-CD.

2.
ACS Appl Bio Mater ; 7(2): 564-578, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36847611

RESUMEN

Short surfactant-like amphiphilic peptide, A3K, resembling a surfactant with a hydrophobic tail (A3) and a polar headgroup (K), is experimentally determined to form a membrane. Although the peptides are known to exist as ß-strands, the exact packing architecture stabilizing the membrane is unknown. Earlier simulation studies have reported successful packing configurations through trial and error. In this work, we present a systematic protocol to identify the best peptide configurations for different packing patterns. The influence of stacking peptides in square and hexagonal packing geometry with the neighboring peptides in parallel and antiparallel orientations was explored. The best peptide configurations were determined from the free energy of bringing 2-4 peptides together as a bundle that can be stacked into a membrane. The stability of the assembled bilayer membrane was further investigated through molecular dynamics simulation. The role of peptide tilting, interpeptide distance, the nature and the extent of interactions, and the conformational degrees of freedom on the stability of the membrane is discussed. The consistency with the experimental findings suggests hexagonal antiparallel as the most relevant molecular architecture.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Péptidos/química , Conformación Molecular , Tensoactivos
3.
J Phys Chem B ; 127(26): 5821-5836, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37364023

RESUMEN

Alanine-rich tetrapeptides like A3K dominantly exist as polyproline II helices in dilute aqueous solutions. However, during self-assembly, based on the free energy calculation in implicit solvent for various peptide conformations, only the peptides in the ß-strand conformation can be packed closely. This necessitates the conformational transition to the ß-strand commonly observed during peptide self-assembly such as in amyloid fibril formation. In fact, the closest interpeptide distance of 4.8 Å is consistent with the interstrand distance determined from the X-ray diffraction pattern of many amyloid fibrils. The position of free energy minimum obtained from implicit solvent calculation matches exactly with the explicit solvent simulation through umbrella sampling when the peptide conformations are restrained, demonstrating the applicability of the former for rapid screening of peptide configurations favorable for self-assembly. The barrier in the free energy profile in the presence of water arises out of the entropic restriction on the interstitial water molecules while satisfying the hydrogen bonding of both the peptides by forming water mediated hydrogen bond bridge. Further, the high energy barrier observed for the ß-strand suggests that peptides initially tend to self-assemble in the polyproline II structure to mitigate the desolvation energy cost; the transition to the ß-strand would happen only in the later stage after crossing the barrier. The umbrella sampling simulations with peptides allowed to change conformations, relative to each other, confirm the dynamic conformational transition during the course of the self-assembly supporting the "dock and lock" mechanism suggested for amyloid fibrillar growth.


Asunto(s)
Péptidos , Agua , Conformación Proteica en Lámina beta , Péptidos/química , Estructura Secundaria de Proteína , Agua/química , Solventes/química , Amiloide/química
4.
J Chem Inf Model ; 61(8): 3927-3944, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34379415

RESUMEN

Water structure in aqueous osmolyte solutions, deduced from the slight alteration in the water-water radial distribution function, the decrease in water-water hydrogen bonding, and tetrahedral ordering based only on the orientation of nearest water molecules derived from the molecular dynamics simulations, appears to have been perturbed. A careful analysis, however, reveals that the hydrogen bonding and the tetrahedral ordering around a water molecule in binary solutions remain intact as in neat water when the contribution of osmolyte-water interactions is appropriately incorporated. Furthermore, the distribution of the water binding energies and the water excess chemical potential of solvation in solutions are also pretty much the same as in neat water. Osmolytes are, therefore, well integrated into the hydrogen-bond network of water. Indeed, osmolytes tend to preferentially hydrogen bond with water molecules and their interaction energies are strongly correlated to their hydrogen-bonding capability. The graph network analysis, further, illustrates that osmolytes act as hubs in the percolated hydrogen-bond network of solutions. The degree of hydrogen bonding of osmolytes predominantly determines all of the network properties. Osmolytes like ethanol that form fewer hydrogen bonds than a water molecule disrupt the water hydrogen-bond network, while other osmolytes that form more hydrogen bonds effectively increase the connectivity among water molecules. Our observation of minimal variation in the local structure and the vitality of osmolyte-water hydrogen bonds on the solution network properties clearly imply that the direct interaction between protein and osmolytes is solely responsible for the protein stability. Further, the relevance of hydrogen bonds on solution properties suggests that the hydrogen-bonding interaction among protein, water, and osmolyte could be the key determinant of the protein conformation in solutions.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Hidrógeno , Enlace de Hidrógeno , Conformación Proteica
5.
ACS Omega ; 5(40): 25655-25667, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073091

RESUMEN

We find, through atomistic molecular dynamics simulation of native cyclodextrins (CDs) in water, that although the outer surface of a CD appears like a truncated cone, the inner cavity resembles a conical hourglass because of the inward protrusion of the glycosidic oxygens. Furthermore, the conformations of the constituent α-glucose molecules are found to differ significantly from a free monomeric α-glucose molecule. This is the first computational study that maps the conformational change to the preferential hydrogen bond donating capacity of one of the secondary hydroxyl groups of CD, in consensus with an NMR experiment. We have developed a simple and novel geometry-based technique to identify water molecules occupying the nonspherical CD cavity, and the computed water occupancies are in close agreement with the experimental and density functional theory studies. Our analysis reveals that a water molecule in CD cavity loses out about two hydrogen bonds and remains energetically frustrated but possesses higher orientational degree of freedom compared to bulk water. In the context of CD-drug complexation, these imply a nonclassical, that is, enthalpically driven hydrophobic association of a drug in CD cavity.

6.
J Phys Chem B ; 116(22): 6506-13, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22574766

RESUMEN

Cosolvent hydrophobic preferential interactions with methane in aqueous methanol solutions are evaluated on the basis of the solute excess chemical potential derived from molecular simulations using the quasi-chemical (QC) theory generalization of the potential distribution theorem (PDT). We find that the methane-methanol preferential interaction parameter derived from QC theory quantitatively captures the favorable solvation of methane in methanol solutions in terms of important local solute-solvent (water and methanol) intermolecular interactions within a defined inner shell around the solute, and nonlocal solute interactions with solvent molecules outside this inner shell. Moreover, a unique inner shell can be defined such that the preferential interaction parameter is derived exclusively from the free energy of cavity formation in the aqueous cosolvent solution without the solute, where this cavity corresponds to the specified inner shell, and the mean interaction or binding energy of the solute with solvent molecules outside this inner shell. This inner-shell definition leads to a description of solute-cosolvent preferential interactions in which the molecular details of those interactions are derived from the effect of cosolvent on cavity statistics in the aqueous cosolvent solution alone. The finding suggests that solution thermodynamic behavior beyond steric exclusion (macromolecular crowding) contribute to the molecular mechanisms by which cosolvent preferential interactions influence protein stability and activity.


Asunto(s)
Metano/química , Metanol/química , Modelos Químicos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Soluciones
7.
Langmuir ; 27(22): 13713-8, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21958073

RESUMEN

We compare protein-protein and protein-polymer osmotic virial coefficients measured by static light scattering for aqueous solutions of lysozyme with low-molecular-weight, hydroxy-terminated (hPEG) and methyl-terminated (mPEG) poly(ethylene glycol) at two solution conditions: pH 7.0 and 0.01 M ionic strength, and pH 6.2 and 0.8 M ionic strength. We find that adding PEG to aqueous lysozyme solutions makes a net repulsive contribution to lysozyme-lysozyme interactions, independent of ionic strength and PEG end-group hydrophobicity. PEG end-group hydrophobicity has a profound effect on the magnitude of this contribution, however, at low ionic strength where mPEG-lysozyme attractive interactions become significant. The enhanced attractions promote mPEG-lysozyme preferential interactions at the expense of lysozyme self-interactions, which leads to lysozyme-lysozyme interactions that are more repulsive in the presence of mPEG. These preferential interactions also lead to the preferential exclusion of diffusable ions locally around the protein, which results in a pronounced ionic strength dependence of mPEG-mediated lysozyme-lysozyme interactions.


Asunto(s)
Muramidasa/química , Polietilenglicoles/química , Animales , Pollos , Luz , Unión Proteica , Dispersión de Radiación , Soluciones , Espectrofotometría Ultravioleta
8.
J Phys Chem B ; 115(46): 13633-42, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21992507

RESUMEN

We extend the application of Kirkwood-Buff (KB) solution theory integrals to calculate cosolvent preferential interaction parameters from molecular simulations by deriving from a single simulation trajectory the excess chemical potential of the solute in addition to the solute-solvent molecular distribution functions. The solute excess chemical potential is derived from the potential distribution theorem (PDT) and used to define the local solvent domain around the solute, as distinguished from bulk solution. We show that this KB/PDT characterization of preferential molecular interactions resolves the problem of convergence of the preferential interaction parameter in the bulk solution limit, and as such, gives reliable estimates of preferential interaction parameters for methanol, ethanol, glycerol, and urea in aqueous cosolvent solutions with neopentane or tetramethyl ammonium ion as the solute. Preferential interaction parameters that are also calculated on the basis of cosolvent proximal distributions around the constituent methyl groups of the two solutes with the assumption of group additivity are in good agreement with those obtained by considering the molecular solute as a whole. The results suggest that this approach can be applied to estimate site-specific cosolvent preferential interaction parameters locally on the surface of complex, macromolecular solutes, such as proteins.


Asunto(s)
Solventes/química , Agua/química , Etanol/química , Glicerol/química , Metanol/química , Simulación de Dinámica Molecular , Urea/química
9.
Biophys J ; 95(5): 2219-25, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18515399

RESUMEN

Motivated by a quasi-chemical view of protein hydration, we define specific hydration sites on the surface of globular proteins in terms of the local water density at each site relative to bulk water density. The corresponding kinetic definition invokes the average residence time for a water molecule at each site and the average time that site remains unoccupied. Bound waters are identified by high site occupancies using either definition. In agreement with previous molecular dynamics simulation studies, we find only a weak correlation between local water densities and water residence times for hydration sites on the surface of two globular proteins, lysozyme and staphylococcal nuclease. However, a strong correlation is obtained when both the average residence and vacancy times are appropriately taken into account. In addition, two distinct kinetic regimes are observed for hydration sites with high occupancies: long residence times relative to vacancy times for a single water molecule, and short residence times with high turnover involving multiple water molecules. We also correlate water dynamics, characterized by average occupancy and vacancy times, with local heterogeneities in surface charge and surface roughness, and show that both features are necessary to obtain sites corresponding to kinetically bound waters.


Asunto(s)
Nucleasa Microcócica/química , Muramidasa/química , Proteínas/química , Termodinámica , Agua/química , Sitios de Unión , Simulación por Computador , Cinética , Modelos Químicos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...