Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1312: 342761, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834276

RESUMEN

BACKGROUND: Diabetes is a significant health threat, with its prevalence and burden increasing worldwide indicating its challenge for global healthcare management. To decrease the disease severity, the diabetic patients are recommended to regularly check their blood glucose levels. The conventional finger-pricking test possesses some drawbacks, including painfulness and infection risk. Nowadays, smartphone has become a part of our lives offering an important benefit in self-health monitoring. Thus, non-invasive wearable sweat glucose sensor connected with a smartphone readout is of interest for real-time glucose detection. RESULTS: Wearable sweat glucose sensing device is fabricated for self-monitoring of diabetes. This device is designed as a body strap consisting of a sensing strip and a portable potentiostat connected with a smartphone readout via Bluetooth. The sensing strip is modified by carbon nanotubes (CNTs)-cellulose nanofibers (CNFs), followed by electrodeposition of Prussian blue. To preserve the activity of glucose oxidase (GOx) immobilized on the modified sensing strip, chitosan is coated on the top layer of the electrode strip. Herein, machine learning is implemented to correlate between the electrochemical results and the nanomaterial content along with deposition cycle of prussian blue, which provide the highest current response signal. The optimized regression models provide an insight, establishing a robust framework for design of high-performance glucose sensor. SIGNIFICANCE: This wearable glucose sensing device connected with a smartphone readout offers a user-friendly platform for real-time sweat glucose monitoring. This device provides a linear range of 0.1-1.5 mM with a detection limit of 0.1 mM that is sufficient enough for distinguishing between normal and diabetes patient with a cut-off level of 0.3 mM. This platform might be an alternative tool for improving health management for diabetes patients.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Aprendizaje Automático , Teléfono Inteligente , Sudor , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Técnicas Biosensibles/instrumentación , Diabetes Mellitus/diagnóstico , Glucosa/análisis , Nanotubos de Carbono/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Electroquímicas/instrumentación
2.
Talanta ; 270: 125510, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128281

RESUMEN

Enzymatic electrochemical biosensor is the most common analytical platform for medical diagnosis. To mimic the biological environment of the enzyme for maintaining the function of biosensor, zwitterionic hydrogels have been recognized as effective matrices for enzymatic immobilization. Herein, a zwitterionic hydrogel derived from a copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-N-methacryloyloxyethyl tyrosine methylester (MAT)] (PMM) was firstly applied as versatile coating to preserve stability and activity of oxidase enzymes, glucose oxidase (GOx) and lactate oxidase (LOx) for enzymatic electrochemical sensor. A screen-printed carbon electrode (SPCE) was sequentially coated with nitrogen-doped graphene (NDG), oxidase enzyme, and PMM mixed with Ru(II)bpy32+ and (NH4)2S2O8 followed by visible light irradiation for 3 min to induce PMM gelation. Electrochemical detection of glucose and lactate using the modified SPCE was performed via amperometry in the presence of hydrogen peroxide. The activity of both GOx and LOx immobilized on the modified SPCE was well maintained for 49 days at 87 and 80 %, respectively. Additionally, two different electrodes, a screen-printed graphene electrode (SPGE), and a screen-printed silver electrode (SPAgE), similarly modified gave the same satisfactory detection of spiked glucose and lactate in human plasma and sweat with 93-118 % recovery. This indicates the potential of the PMM hydrogel as a universal platform for preservation of enzymes which can be easily fabricated without the need for specific chemical modification of the electrode.


Asunto(s)
Técnicas Biosensibles , Grafito , Humanos , Oxidorreductasas , Hidrogeles , Glucosa , Glucosa Oxidasa , Carbono , Ácido Láctico , Enzimas Inmovilizadas , Electrodos
3.
Int J Biol Macromol ; 242(Pt 2): 124757, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150378

RESUMEN

Flexible conductive skin patches were readily fabricated on silk fabric by in situ deposition of gold nanoparticles (AuNPs) followed by carbonization. The carbonized AuNPs-silk with high flexibility was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and Fourier transform Raman spectroscopy (FT-Raman) to verify the well arrangement surface and desired chemical binding. The conductivity of silk skin patch, measured by a four-point probe, was found to be 109.24 ± 13 S cm-1 × 10-3, verifying the potential application as a working electrode in electrochemical sensor and a sweat collection patch for direct detection by laser desorption/ionization mass spectrometry (LDI-MS). This silk skin patch offered a linear range of 0-100 mM with a detection limit (LOD) of 20 mM for electrochemical sensor and 8 mM for LDI-MS, respectively. Ultimately, this skin patch is successfully applied for the detection of sweat urea at its cut-off value (60 mM) for indicating chronic kidney disease (CKD) in artificial sweat with satisfactory results. By using dual-detection technique on single silk substrate, this platform might be an alternative approach for a non-invasive sweat urea detection with high precision.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Sudor/química , Oro/química , Seda , Urea/análisis , Nanopartículas del Metal/química
4.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234517

RESUMEN

Electrochemical reduction of carbon dioxide (CO2RR) to crystalline solid carbon at room temperature is challenging, but it is a providential CO2 utilization route due to its indefinite storage and potential applications of its products in many advanced technologies. Here, room-temperature synthesis of polycrystalline nanographene was achieved by CO2RR over the electrodeposited Bi on Sn substrate prepared with various bismuth concentrations (0.01 M, 0.05 M, and 0.1 M). The solid carbon products were solely produced on all the prepared electrodes at the applied potential -1.1 V vs. Ag/AgCl and were characterized as polycrystalline nanographene with an average domain size of ca. 3-4 nm. The morphology of the electrodeposited Bi/Sn electrocatalysts did not have much effect on the final structure of the solid carbon products formed but rather affected the CO2 electroreduction activity. The optimized negative potential for the formation of nanographene products on the 0.05Bi/Sn was ca. -1.5 V vs. Ag/AgCl. Increasing the negative value of the applied potential accelerated the agglomeration of the highly reactive nascent Bi clusters in situ formed under the reaction conditions, which, as a consequence, resulted in a slight deviation of the product selectivity toward gaseous CO and H2 evolution reaction. The Bi-graphene composites produced by this method show high potential as an additive for working electrode modification in electrochemical sensor-related applications.

5.
Biosens Bioelectron ; 203: 114039, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121444

RESUMEN

Thread-based electrochemical immunosensor is fabricated for non-invasive detection of cortisol in sweat by immobilization of anti-cortisol on L-cys/AuNPs/MXene modified conductive thread electrode. MXene and AuNPs increase the surface area of conductive thread electrode and facilitate anti-cortisol immobilization leading to enhanced sensor sensitivity. Anti-cortisol is immobilized on L-cys/AuNPs/MXene modified electrode by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide coupling agents. The electrochemical detection of cortisol is based on the decrease of oxidation current towards the antigen-antibody binding interaction owing to blocking of electron transfer process by cortisol. Under the optimal conditions, this immunosensor offers high sensitivity, a wide linearity of 5-180 ng mL-1 and a detection limit of 0.54 ng mL-1 with negligible effect from interferences. Furthermore, this immunosensor provides high reproducibility and long-term storage stability (≥6 weeks). Ultimately, this system is successfully applied for the detection of cortisol in artificial sweat with satisfactory results. Hence, this platform might be suitable to apply as a wearable electrochemical sensor for sweat cortisol by integrating on a wristband.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas/métodos , Electrodos , Oro , Hidrocortisona , Inmunoensayo/métodos , Límite de Detección , Reproducibilidad de los Resultados , Sudor
6.
Anal Chim Acta ; 1179: 338643, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34535258

RESUMEN

Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Calidad de Vida , Textiles
7.
Talanta ; 192: 424-430, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348413

RESUMEN

A non-invasive textile-based colorimetric sensor for the simultaneous detection of sweat pH and lactate was created by depositing of three different layers onto a cotton fabric: 1.) chitosan, 2.) sodium carboxymethyl cellulose, and 3.) indicator dye or lactate assay. This sensor was characterized using field emission scanning electron microscopy and fourier transform infrared spectroscopy. Then, this sensor was used to measure pH and lactate concentration using the same sweat sample. The sensing element for sweat pH was composed of a mixture of methyl orange and bromocresol green while a lactate enzymatic assay was chosen for the lactate sensor. The pH indicator gradually shifted from red to blue as the pH increased, whereas the purple color intensity increased with the concentration of lactate in the sweat. By comparing these colors with a standard calibration, this platform can be used to estimate the sweat pH (1-14) and the lactate level (0-25 mM). Fading of the colors of this sensor was prevented by using cetyltrimethylammonium bromide (CTAB). The flexibility of this textile based sensor allows it to be incorporated into sport apparels and accessories hence potentially enabling real-time and continuous monitoring of sweat pH and lactate. This non-invasive sensing platform might open a new avenue for personal health monitoring and medical diagnosis as well as for determining of the physiological conditions of endurance athletes.


Asunto(s)
Colorimetría/instrumentación , Ácido Láctico/análisis , Sudor/química , Compuestos Azo/química , Verde de Bromocresol/química , Calibración , Carboximetilcelulosa de Sodio/química , Quitosano/química , Color , Colorimetría/métodos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...