Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 36: 212-221, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28502587

RESUMEN

BACKGROUND: Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a key regulator of protein synthesis in mammalian cells. It phosphorylates and inhibits eEF2, the translation factor necessary for peptide translocation during the elongation phase of protein synthesis. When cellular energy demand outweighs energy supply, AMP-activated protein kinase (AMPK) and eEF2K become activated, leading to eEF2 phosphorylation, which reduces the rate of protein synthesis, a process that consumes a large proportion of cellular energy under optimal conditions. AIM: The goal of the present study was to elucidate the mechanisms by which AMPK activation leads to increased eEF2 phosphorylation to decrease protein synthesis. METHODS: Using genetically modified mouse embryo fibroblasts (MEFs), effects of treatments with commonly used AMPK activators to increase eEF2 phosphorylation were compared with that of the novel compound 991. Bacterially expressed recombinant eEF2K was phosphorylated in vitro by recombinant activated AMPK for phosphorylation site-identification by mass spectrometry followed by site-directed mutagenesis of the identified sites to alanine residues to study effects on the kinetic properties of eEF2K. Wild-type eEF2K and a Ser491/Ser492 mutant were retrovirally re-introduced in eEF2K-deficient MEFs and effects of 991 treatment on eEF2 phosphorylation and protein synthesis rates were studied in these cells. RESULTS & CONCLUSIONS: AMPK activation leads to increased eEF2 phosphorylation in MEFs mainly by direct activation of eEF2K and partly by inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment of MEFs with AMPK activators can also lead to eEF2K activation independently of AMPK probably via a rise in intracellular Ca2+. AMPK activates eEF2K by multi-site phosphorylation and the newly identified Ser491/Ser492 is important for activation, leading to mTOR-independent inhibition of protein synthesis. Our study provides new insights into the control of eEF2K by AMPK, with implications for linking metabolic stress to decreased protein synthesis to conserve energy reserves, a pathway that is of major importance in cancer cell survival.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Animales , Calcio/farmacología , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos
2.
Sci Rep ; 6: 23476, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27087055

RESUMEN

The MAP kinase-interacting kinases (MNK1 and MNK2) are non-essential enzymes which are activated by MAP kinases. They are implicated in controlling protein synthesis. Here we show that mice in which the expression of either MNK1 or MNK2 has been knocked out (KO) are protected against adverse effects of high-fat feeding, and in distinct ways. High-fat diet (HFD)-fed MNK2-KO show less weight gain than wild-type animals, and improved glucose tolerance, better insulin sensitivity and markedly diminished adipose tissue inflammation. This suggests MNK2 plays a role in adipogenesis and/or lipogenesis and in macrophage biology. MNK1-KO/HFD mice show better glucose tolerance and insulin sensitivity, but gain weight and show similar adipose inflammation to WT animals. These data suggest MNK1 participates in mediating HFD-induced insulin resistance. Our findings reveal distinct roles for the MNKs in a novel area of disease biology, metabolic dysfunction, and suggests they are potential new targets for managing metabolic disease.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Proteínas Serina-Treonina Quinasas/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Diferenciación Celular , Línea Celular , Prueba de Tolerancia a la Glucosa , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/genética
3.
Oncogene ; 27(8): 1106-13, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17724476

RESUMEN

There is currently substantial interest in the regulation of cell function by mammalian target of rapamycin (mTOR), especially effects linked to the rapamycin-sensitive mTOR complex 1 (mTORC1). Rapamycin induces G(1) arrest and blocks proliferation of many tumor cells, suggesting that the inhibition of mTORC1 signaling may be useful in cancer therapy. In MCF7 breast adenocarcinoma cells, rapamycin decreases levels of cyclin D1, without affecting cytoplasmic levels of its mRNA. In some cell-types, rapamycin does not affect cyclin D1 levels, whereas the starvation for leucine (which impairs mTORC1 signaling more profoundly than rapamycin) does. This pattern correlates with the behavior of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1, an mTORC1 target that regulates translation initiation). siRNA-mediated knock-down of 4E-BP1 abrogates the effect of rapamycin on cyclin D1 expression and increases the polysomal association of the cyclin D1 mRNA. Our data identify 4E-BP1 as a key regulator of cyclin D1 expression, indicate that this effect is not mediated through the changes in cytoplasmic levels of cyclin D1 mRNA and suggest that, in some cell types, interfering with the amino acid input to mTORC1, rather than using rapamycin, may inhibit proliferation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Fosfoproteínas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Ciclina D1/biosíntesis , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Proteínas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
4.
Biochem Soc Trans ; 35(Pt 5): 1187-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17956308

RESUMEN

Amino acids regulate signalling through the mTORC1 (mammalian target of rapamycin, complex 1) and thereby control a number of components of the translational machinery, including initiation and elongation factors. mTORC1 also positively regulates other anabolic processes, in particular ribosome biogenesis. The most effective single amino acid is leucine. A key issue is how intracellular amino acids regulate mTORC1. This does not require the TSC1/2 (tuberous sclerosis complex 1/2) complex, which is involved in the activation of mTORC1, for example, by insulin. Progress in understanding the mechanisms responsible for this will be reviewed.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR
5.
Oncogene ; 25(48): 6423-35, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17041627

RESUMEN

There is currently a high level of interest in signalling through the mammalian target of rapamycin (mTOR). This reflects both its key role in many cell functions and its involvement in disease states such as cancers. The best understood targets for mTOR signalling are proteins involved in controlling the translational machinery, including the ribosomal protein S6 kinases and proteins that regulate the initiation and elongation phases of translation. Indeed, there is compelling evidence that at least one of these targets of mTOR (eukaryotic initiation factor eIF4E) plays a key role in tumorigenesis. It is regulated through the mTOR-dependent phosphorylation of inhibitory proteins such as eIF4E-binding protein 1. Thus, targeting mTOR signalling may be an effective anticancer strategy, in at least a significant subset of tumours. Not all effects of mTOR are sensitive to the classical anti-mTOR drug rapamycin, and this compound also interferes with other processes besides eIF4E function. Developing new approaches to targeting mTOR for cancer therapy requires more detailed knowledge of signalling downstream of mTOR. Such advances are likely to come from further work to understand the regulation of mTOR targets such as components of the translational apparatus.


Asunto(s)
División Celular/fisiología , Transformación Celular Neoplásica , Biosíntesis de Proteínas , Proteínas Quinasas/fisiología , Transformación Genética , Animales , Supervivencia Celular , Humanos , Modelos Biológicos , Factores de Elongación de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
6.
Biochem Soc Trans ; 34(Pt 2): 213-6, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16545079

RESUMEN

Insulin rapidly activates protein synthesis by activating components of the translational machinery including eIFs (eukaryotic initiation factors) and eEFs (eukaryotic elongation factors). In the long term, insulin also increases the cellular content of ribosomes to augment the capacity for protein synthesis. The rapid activation of protein synthesis by insulin is mediated primarily through phosphoinositide 3-kinase. This involves the activation of PKB (protein kinase B). In one case, PKB acts to phosphorylate and inactivate glycogen synthase kinase 3, which in turn phosphorylates and inhibits eIF2B. Insulin elicits the dephosphorylation and activation of eIF2B. Since eIF2B is required for recycling of eIF2, a factor required for all cytoplasmic translation initiation events, this will contribute to overall activation of protein synthesis. PKB also phosphorylates the TSC1 (tuberous sclerosis complex 1)-TSC2 complex to relieve its inhibitory action on the mTOR (mammalian target of rapamycin). Inhibition of mTOR by rapamycin markedly impairs insulin-activated protein synthesis. mTOR controls translation initiation and elongation. The cap-binding factor eIF4E can be sequestered in inactive complexes by 4E-BP1 (eIF4E-binding protein 1). Insulin elicits phosphorylation of 4E-BP1 and its release from eIF4E, allowing eIF4E to form initiation factor complexes. Insulin induces dephosphorylation and activation of eEF2 to accelerate elongation. Both effects are blocked by rapamycin. Insulin inactivates eEF2 kinase by increasing its phosphorylation at several mTOR-regulated sites. Insulin also stimulates synthesis of ribosomal proteins by promoting recruitment of their mRNAs into polyribosomes. This is inhibited by rapamycin. Several key questions remain about, for example, the mechanisms by which mTOR controls 4E-BP1 and eEF2 kinase and the control of ribosomal protein translation.


Asunto(s)
Insulina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR , eIF-2 Quinasa/metabolismo
8.
Curr Top Microbiol Immunol ; 279: 215-44, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14560960

RESUMEN

Protein synthesis requires nutrients both as precursors (amino acids) and as a source of energy, since this process consumes a high proportion of cellular metabolic energy. Recent work has shown that both types of nutrients directly influence the activities of components of the translational machinery in mammalian cells. Amino acids positively regulate signalling through the mammalian target of the rapamycin (mTOR) pathway, although the degree of dependency on external amino acids varies between cell types. mTOR signalling modulates several key components involved in mRNA translation, in particular (via repressor proteins) the cap-binding initiation factor eIF4E, the ribosomal protein S6 kinases, and elongation factor eEF2. The branched-chain amino acid leucine is the most effective one in most cell types. It is currently unclear how mammalian cells sense prevailing amino acid levels, although this may involve intracellular amino acids. Cellular ATP levels can also influence mTOR activity. The activities of some translation factors are modulated by mTOR-independent mechanisms. Examples include the regulation of eEF2 by cellular energy levels, which may be controlled via the AMP-activated protein kinase, and the activity of the guanine nucleotide-exchange factor eIF2B, which is modulated by amino acids and metabolic fuels.


Asunto(s)
Aminoácidos/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Quinasas/metabolismo , Animales , Cricetinae , Factor 2B Eucariótico de Iniciación/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Factor 2 de Elongación Peptídica/fisiología , Proteínas Quinasas/fisiología , Ratas , Proteínas Quinasas S6 Ribosómicas/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
9.
FEBS Lett ; 507(1): 1-5, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11682048

RESUMEN

The translation initiation factor eIF4A is cleaved within mammalian cells infected by foot-and-mouth disease virus (FMDV). The FMDV 3C protease cleaves eIF4AI (between residues E143 and V144), but not the closely related eIF4AII. Modification of eIF4AI, to produce a sequence identical to eIF4AII around the cleavage site, blocked proteolysis. Alignment of mammalian eIF4AI onto the three-dimensional structure of yeast eIF4A located the scissile bond within an exposed, flexible portion of the molecule. The N- and C-terminal cleavage products of eIF4AI generated by FMDV 3C dissociate. Cleavage of eIF4AI by FMDV 3C is thus expected to inactivate it.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Virus de la Fiebre Aftosa/enzimología , Factores de Iniciación de Péptidos/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Cisteína Endopeptidasas/genética , Factor 4A Eucariótico de Iniciación , Virus de la Fiebre Aftosa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Mapeo Peptídico , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas Virales/genética
12.
Cell Death Differ ; 8(8): 841-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11526437

RESUMEN

Treatment of Swiss 3T3 cells with staurosporine resulted in dephosphorylation of two proteins which play key roles in regulating mRNA translation. This occurred before the execution of apoptosis, assessed by caspase-3 activity. These translation regulators are p70 S6 kinase, which phosphorylates ribosomal protein S6, and eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1), which both lie downstream of the mammalian target of rapamycin (mTOR). This resulted in decreased p70 S6 kinase activity, dephosphorylation of ribosomal protein S6, increased binding of 4E-BP1 to eIF4E and a concomitant decrease in eIF4F complexes. Our data show that staurosporine impairs mTOR signalling in vivo but that this not due to direct inhibition of mTOR or to inhibition of protein kinase C. It is becoming clear that agents which cause apoptosis inactivate mTOR signalling as a common early response prior to the execution of apoptosis, i.e., before caspase activation.


Asunto(s)
Apoptosis/genética , Inhibidores Enzimáticos/farmacología , Biosíntesis de Proteínas/fisiología , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Estaurosporina/farmacología , Células 3T3 , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis/efectos de los fármacos , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Caspasas/efectos de los fármacos , Caspasas/metabolismo , Proteínas de Ciclo Celular , Factor 2 Eucariótico de Iniciación/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación , Insulina/farmacología , Ratones , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas Quinasas/efectos de los fármacos , Proteínas/antagonistas & inhibidores , ARN Mensajero/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
13.
EMBO J ; 20(16): 4349-59, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11500362

RESUMEN

Eukaryotic initiation factor (eIF) 2B is a heteromeric guanine nucleotide exchange factor that plays an important role in regulating mRNA translation. Here we identify multiple phosphorylation sites in the largest, catalytic, subunit (epsilon) of mammalian eIF2B. These sites are phosphorylated by four different protein kinases. Two conserved sites (Ser712/713) are phosphorylated by casein kinase 2. They lie at the extreme C-terminus and are required for the interaction of eIF2Bepsilon with its substrate, eIF2, in vivo and for eIF2B activity in vitro. Glycogen synthase kinase 3 (GSK3) is responsible for phosphorylating Ser535. This regulatory phosphorylation event requires both the fourth site (Ser539) and a distal region, which acts to recruit GSK3 to eIF2Bepsilon in vivo. The fifth site, which lies outside the catalytic domain of eIF2Bepsilon, can be phosphorylated by casein kinase 1. All five sites are phosphorylated in the eIF2B complex in vivo.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Animales , Sitios de Unión , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Quinasa de la Caseína II , Línea Celular , Factor 2B Eucariótico de Iniciación/genética , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
EMBO J ; 20(16): 4370-9, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11500364

RESUMEN

Elongation factor 2 kinase (eEF2k) phosphorylates and inactivates eEF2. Insulin induces dephosphorylation of eEF2 and inactivation of eEF2 kinase, and these effects are blocked by rapamycin, which inhibits the mammalian target of rapamycin, mTOR. However, the signalling mechanisms underlying these effects are unknown. Regulation of eEF2 phosphorylation and eEF2k activity is lost in cells in which phosphoinositide-dependent kinase 1 (PDK1) has been genetically knocked out. This is not due to loss of mTOR function since phosphorylation of another target of mTOR, initiation factor 4E-binding protein 1, is not defective. PDK1 is required for activation of members of the AGC kinase family; we show that two such kinases, p70 S6 kinase (regulated via mTOR) and p90(RSK1) (activated by Erk), phosphorylate eEF2k at a conserved serine and inhibit its activity. In response to insulin-like growth factor 1, which activates p70 S6 kinase but not Erk, regulation of eEF2 is blocked by rapamycin. In contrast, regulation of eEF2 by stimuli that activate Erk is insensitive to rapamycin, but blocked by inhibitors of MEK/Erk signalling, consistent with the involvement of p90(RSK1).


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Proteínas Portadoras/metabolismo , Quinasa del Factor 2 de Elongación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo
15.
Biochem Soc Trans ; 29(Pt 4): 541-7, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11498025

RESUMEN

Protein synthesis in mammalian cells is regulated through alterations in the states of phosphorylation of eukaryotic initiation factors and elongation factors (eIFs and eEFs respectively) and of other regulatory proteins. This modulates their activities or their abilities to interact with one another. Insulin activates several of these proteins including the following: the guanine-nucleotide exchange factor eIF2B; the eIF4F complex, which (through eIF4E) interacts with the cap of the mRNA; p70 S6 kinase; and elongation factor eEF2, which mediates the translocation step of elongation. Control of the last three of these is linked to mTOR (mammalian target of rapamycin). In Chinese hamster ovary cells, regulation of all these proteins by insulin is modulated by the presence of amino acids and/or glucose in the medium. For example, p70 S6 kinase activity declines in the absence of amino acids and cannot be stimulated by insulin under this condition. The readdition of amino acids, especially leucine, restores activity and sensitivity to insulin. With eIF2B and eEF2, both amino acids and glucose must be provided for insulin to regulate their activities. In contrast, insulin-stimulation of the formation of eIF4F complexes requires glucose but not amino acids. Glucose metabolism is required for this permissive effect. Our recent studies have also identified the mechanism by which mTOR signalling regulates the phosphorylation of eEF2. eEF2 kinase is phosphorylated by p70 S6 kinase at Ser-366; this results in the inactivation of eEF2 kinase, especially at low (micromolar) Ca concentrations.


Asunto(s)
Factor 2B Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Insulina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células CHO , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Cricetinae , Medios de Cultivo , Regulación de la Expresión Génica/efectos de los fármacos , Mamíferos , Factores de Iniciación de Péptidos/genética , Fosfoproteínas/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR
16.
Biochem J ; 358(Pt 2): 497-503, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11513750

RESUMEN

The eukaryotic initiation factor 4E (eIF4E) binding protein (4E-BP1) interacts directly with eIF4E and prevents it from forming initiation factor (eIF4F) complexes required for the initiation of cap-dependent mRNA translation. Insulin and other agents induce the phosphorylation of 4E-BP1 at multiple sites, resulting in its release from eIF4E, and this involves signalling through the mammalian target of rapamycin (mTOR). Here we show that D-glucose promotes the ability of insulin to bring about the phosphorylation of 4E-BP1 and the formation of eIF4F complexes. This appears to involve facilitation of the phosphorylation of at least three phosphorylation sites on 4E-BP1, i.e. Thr-36, Thr-45 and Thr-69. Non-metabolizable glucose analogues cannot substitute for D-glucose, but other hexoses can. This suggests that a product of hexose metabolism mediates the permissive effect of glucose. The effect of glucose was concentration-dependent within the range 1-5 mM. In contrast with the situation for 4E-BP1, glucose does not allow full activation of the 70 kDa ribosomal protein S6 kinase (p70 S6k; another target of mTOR signalling) or phosphorylation, in vivo, of its substrate, ribosomal protein S6. Taken together with earlier data showing that amino acids regulate 4E-BP1 and p70 S6k, the present findings show that 4E-BP1 in particular is regulated in response to the availability of both amino acids and sugars.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucosa/farmacología , Fosfoproteínas/metabolismo , Animales , Células CHO , Metabolismo de los Hidratos de Carbono , Cricetinae , Factor 2 Eucariótico de Iniciación/metabolismo , Hexosas/fisiología , Insulina/farmacología , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
17.
J Neurochem ; 78(4): 779-87, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11520898

RESUMEN

Mice were subjected to 60 min occlusion of the left middle cerebral artery (MCA) followed by 1-6 h of reperfusion. Tissue samples were taken from the MCA territory of both hemispheres to analyse ischaemia-induced changes in the phosphorylation of the initiation factor eIF-2alpha, the elongation factor eEF-2 and p70 S6 kinase by western blot analysis. Tissue sections from additional animals were taken to evaluate ischaemia-induced changes in global protein synthesis by autoradiography and changes in eIF-2alpha phosphorylation by immunohistochemistry. Transient MCA occlusion induced a persistent suppression of protein synthesis. Phosphorylation of eIF-2alpha was slightly increased during ischaemia, it was markedly up-regulated after 1 h of reperfusion and it normalized after 6 h of recirculation despite ongoing suppression of protein synthesis. Similar changes in eIF-2alpha phosphorylation were induced in primary neuronal cell cultures by blocking of endoplasmic reticulum (ER) calcium pump, suggesting that disturbances of ER calcium homeostasis may play a role in ischaemia-induced changes in eIF-2alpha phosphorylation. Dephosphorylation of eIF-2alpha was not paralleled by a rise in levels of p67, a glycoprotein that protects eIF-2alpha from phosphorylation, even in the presence of active eIF-2alpha kinase. Phosphorylation of eEF-2 rose moderately during ischaemia, but returned to control levels after 1 h of reperfusion and declined markedly below control levels after 3 and 6 h of recirculation. In contrast to the only short-lasting phosphorylation of eIF-2a and eEF-2, transient focal ischaemia induced a long-lasting dephosphorylation of p70 S6 kinase. The results suggest that blocking of elongation does not play a major role in suppression of protein synthesis induced by transient focal cerebral ischaemia. Investigating the factors involved in ischaemia-induced suppression of the initiation step of protein synthesis and identifying the underlying mechanisms may help to further elucidate those disturbances directly related to the pathological process triggered by transient cerebral ischaemia and leading to neuronal cell injury.


Asunto(s)
Corteza Cerebral/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neuronas/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Circulación Cerebrovascular , Inhibidores Enzimáticos/farmacología , Immunoblotting , Inmunohistoquímica , Flujometría por Láser-Doppler , Ratones , Arteria Cerebral Media/cirugía , Neuronas/efectos de los fármacos , Fosforilación , Biosíntesis de Proteínas , Ratas , Ratas Wistar , Tapsigargina/farmacología
18.
Insect Biochem Mol Biol ; 31(9): 839-47, 2001 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-11439243

RESUMEN

Mammalian c-Jun N-terminal kinases (JNKs) are members of a group of stress-activated intracellular signalling molecules within the MAP kinase family. Molecular genetic analysis of a highly evolutionarily conserved Drosophila JNK homologue, DJNK, has demonstrated that this molecule plays an essential developmental role in cell shape regulation. However, it remains to be determined whether DJNK also responds to the broad range of cellular stresses and other stimuli that affect its mammalian counterpart. Here we demonstrate that c-Jun, a substrate for mammalian JNKs, is a specific substrate for DJNK and that an antiserum that cross-reacts with activated mammalian JNK at the conserved threonyl-prolyl-tyrosyl (TPY) motif within the activation loop also specifically recognises the activated form of DJNK. Using these two assays, we show that DJNK activity is stimulated in cultured cells by several treatments that activate mammalian JNKs, including addition of arsenite, vanadate and ceramide derivatives. It is therefore concluded that in addition to its essential developmental functions, DJNK plays an important role in stress responses that mirrors its mammalian counterpart.


Asunto(s)
Drosophila/enzimología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Animales , Línea Celular , Tamaño de la Célula , Activación Enzimática , Proteínas Quinasas JNK Activadas por Mitógenos , Mamíferos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismo
19.
J Biol Chem ; 276(35): 32670-7, 2001 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-11431469

RESUMEN

The alpha(1)-adrenergic agonist phenylephrine (PE) and insulin each stimulate protein synthesis in cardiomyocytes. Activation of protein synthesis by PE is involved in the development of cardiac hypertrophy. One component involved here is p70 S6 kinase 1 (S6K1), which lies downstream of mammalian target of rapamycin, whose regulation is thought to involve phosphatidylinositol 3-kinase and protein kinase B (PKB). S6K2 is a recently identified homolog of S6K1 whose regulation is poorly understood. Here we demonstrate that in adult rat ventricular cardiomyocytes, PE and insulin each activate S6K2, activation being 3.5- and 5-fold above basal, respectively. Rapamycin completely blocked S6K2 activation by either PE or insulin. Three different inhibitors of MEK1/2 abolished PE-induced activation of S6K2 whereas expression of constitutively active MEK1 activated S6K2, without affecting the p38 mitogen-activated protein kinase and JNK pathways, indicating that MEK/ERK signaling plays a key role in regulation of S6K2 by PE. PE did not activate PKB, and expression of dominant negative PKB failed to block activation of S6K2 by PE, indicating PE-induced S6K2 activation is independent of PKB. However, this PKB mutant did partially block S6K2 activation by insulin, indicating PKB is required here. Another hypertrophic agent, endothelin 1, also activated S6K2 in a MEK-dependent manner. Our findings provide strong evidence for novel signaling connections between MEK/ERK and S6K2.


Asunto(s)
Corazón/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/metabolismo , Fenilefrina/farmacología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Butadienos/farmacología , Células Cultivadas , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Ventrículos Cardíacos , Insulina/farmacología , Cinética , MAP Quinasa Quinasa 1 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Nitrilos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Receptor Cross-Talk/efectos de los fármacos , Receptor Cross-Talk/fisiología , Proteínas Recombinantes/metabolismo , Sirolimus/farmacología , Transfección
20.
J Biol Chem ; 276(31): 29111-5, 2001 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-11408474

RESUMEN

mRNA translation in eukaryotic cells involves a set of proteins termed translation initiation factors (eIFs), several of which are involved in the binding of ribosomes to mRNA. These include eIF4G, a modular scaffolding protein, and eIF4A, an RNA helicase, of which two closely related forms are known in mammals, eIF4A(I) and eIF4A(II). In mammals, eIF4G possesses two independent sites for binding eIF4A, whereas in other eukaryotes (e.g. yeast) only one site appears to be present, thus raising the issue of the stoichiometry of eIF4G.eIF4A complexes in different eukaryotes. We show that in human embryonic kidney cells eIF4G is associated with eIF4A(I) or eIF4A(II) but not with both simultaneously, suggesting a stoichiometry of 1:1 rather than 1:2. To confirm this, eIF4A(I) or eIF4A(II) was expressed in a tagged form in these cells, and complexes with eIF4G were again isolated. Complexes containing tagged eIF4A(I) or eIF4A(II) contained no endogenous eIF4A, supporting the notion that eIF4G binds only one molecule of eIF4A. Each binding site in eIF4G can bind either eIF4A(I) or eIF4A(II). The data imply that the second binding site in mammalian eIF4A does not bind an additional eIF4A molecule and that initiation factor complexes in different eukaryotes contain one eIF4A per eIF4G.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Anticuerpos , Secuencia de Bases , Línea Celular , Clonación Molecular , Cartilla de ADN , Escherichia coli , Factor 4A Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Humanos , Cinética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ovinos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...