Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Neural Regen Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993139

RESUMEN

ABSTRACT: Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta. Ferroptosis, a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation, plays a vital role in the death of dopaminergic neurons. However, the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated. NADPH oxidase 4 is related to oxidative stress, however, whether it regulates dopaminergic neuronal ferroptosis remains unknown. The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis, and if so, by what mechanism. We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an l-methyl-4-phenyl-l,2,3,6 tetrahydropyridine-induced Parkinson's disease model. NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons. Moreover, NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals. Mechanistically, we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons. Furthermore, by lowering the astrocytic lipocalin-2 expression, NADPH oxidase 4 inhibition reduced l-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation. These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation, which contribute to dopaminergic neuron death, suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.

2.
Polymers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794596

RESUMEN

Hemicellulose extracted by alkali treatment is of interest because of the advantages of its intact sugar structure and high degree of polymerization. However, the hemicellulose extracted by alkali treatment contained more lignin fragments and the presence of a lignin-carbohydrate complex (LCC), which affected the isolation and purification of hemicellulose and its comprehensive utilization. Therefore, the evaluation of the LCC structure of different types of lignocellulosic resources is of great significance. In this study, the LCC structures of hardwoods and Gramineae were enriched in alkaline systems. Information on the composition, structural proportions, and connection patterns of LCC samples was discussed. The similarities and differences between the LCC structures of different units of raw materials were comparatively studied. The results indicated that the monosaccharide fractions were higher in the LCC of Gramineae compared to hardwoods. The composition of the lignin fraction was dominated by G and S units. The phenyl glycosidic (PhGlc) bond is the predominant LCC linkage under alkali-stabilized conditions. In addition, Gramineae PhGlc types are more numerous compared to hardwoods. The results of the study provide insights into the differences in the chemical composition and structural features of LCC in different plants and provide important guidance for the optimization of the process of purifying hemicellulose.

3.
J Agric Food Chem ; 72(18): 10206-10217, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38597965

RESUMEN

Bamboo is a promising biomass resource. However, the complex multilayered structure and chemical composition of bamboo cell walls create a unique anti-depolymerization barrier, which increases the difficulty of separation and utilization of bamboo. In this study, the relationship between the connections of lignin-carbohydrate complexes (LCCs) within bamboo cell walls and their multilayered structural compositions was investigated. The chemical composition, structural properties, dissolution processes, and migration mechanisms of LCCs were analyzed. Alkali-stabilized LCC bonds were found to be predominantly characterized by phenyl glycoside (PhGlc) bonds along with numerous p-coumaric acid (PCA) linkage structures. As demonstrated by the NMR and CLSM results, the dissolution of the LCC during the alkaline pretreatment process was observed to migrate from the inner secondary wall (S-layer) of the bamboo fiber cell walls to the cell corner middle lamella (CCML) and compound middle lamella (CML), ultimately leading to its release from the bamboo. Furthermore, the presence of H-type lignin-FA-arabinoxylan linkage structures within the bamboo LCC was identified with their primary dissolution observed in the S-layer of the bamboo fiber cell walls. The study results provided a clear target for breaking down the anti-depolymerization barrier in bamboo, signifying a major advancement in achieving the comprehensive separation of bamboo components.


Asunto(s)
Carbohidratos , Pared Celular , Lignina , Lignina/química , Pared Celular/química , Carbohidratos/química , Álcalis/química , Sasa/química , Solubilidad , Poaceae/química , Xilanos/química , Espectroscopía de Resonancia Magnética
4.
Sci Rep ; 14(1): 7494, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553518

RESUMEN

Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Imagen por Resonancia Magnética , Encéfalo/patología , Putamen/patología , Progresión de la Enfermedad , Atrofia/patología
5.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227102

RESUMEN

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Asunto(s)
Temblor Esencial , Ataxias Espinocerebelosas , Humanos , Temblor Esencial/epidemiología , Temblor Esencial/genética , China/epidemiología , Ataxias Espinocerebelosas/epidemiología , Ataxias Espinocerebelosas/genética , Nucleótidos
6.
J Adv Res ; 56: 125-136, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36940850

RESUMEN

INTRODUCTION: The glymphatic system offers a perivascular pathway for the clearance of pathological proteins and metabolites to optimize neurological functions. Glymphatic dysfunction plays a pathogenic role in Parkinson's disease (PD); however, the molecular mechanism of glymphatic dysfunction in PD remains elusive. OBJECTIVE: To explore whether matrix metalloproteinase-9 (MMP-9)-mediated ß-dystroglycan (ß-DG) cleavage is involved in the regulation of aquaporin-4 (AQP4) polarity-mediated glymphatic system in PD. METHODS: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and A53T mice were used in this study. The glymphatic function was evaluated using ex vivo imaging. TGN-020, an AQP4 antagonist, was administered to investigate the role of AQP4 in glymphatic dysfunction in PD. GM6001, an MMP-9 antagonist, was administered to investigate the role of the MMP-9/ß-DG pathway in regulating AQP4. The expression and distribution of AQP4, MMP-9, and ß-DG were assessed using western blotting, immunofluorescence, and co-immunoprecipitation. The ultrastructure of basement membrane (BM)-astrocyte endfeet was detected using transmission electron microscopy. Rotarod and open-field tests were performed to evaluate motor behavior. RESULTS: Perivascular influx and efflux of cerebral spinal fluid tracers were reduced in MPTP-induced PD mice with impaired AQP4 polarization. AQP4 inhibition aggravated reactive astrogliosis, glymphatic drainage restriction, and dopaminergic neuronal loss in MPTP-induced PD mice. MMP-9 and cleaved ß-DG were upregulated in both MPTP-induced PD and A53T mice, with reduced polarized localization of ß-DG and AQP4 to astrocyte endfeet. MMP-9 inhibition restored BM-astrocyte endfeet-AQP4 integrity and attenuated MPTP-induced metabolic perturbations and dopaminergic neuronal loss. CONCLUSION: AQP4 depolarization contributes to glymphatic dysfunction and aggravates PD pathologies, and MMP-9-mediated ß-DG cleavage regulates glymphatic function through AQP4 polarization in PD, which may provide novel insights into the pathogenesis of PD.


Asunto(s)
Acuaporinas , Sistema Glinfático , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/ultraestructura , Metaloproteinasa 9 de la Matriz/metabolismo , Sistema Glinfático/metabolismo , Dopamina/metabolismo , Acuaporinas/metabolismo
7.
NPJ Parkinsons Dis ; 9(1): 117, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491350

RESUMEN

Peripheral immune cells play a vital role in the development of Parkinson's disease (PD). However, their cytokine and chemokine secretion functions remain unclear. Therefore, we aimed to explore the cytokine and chemokine secretion functions of specific immune cell subtypes in drug-naïve patients with PD at different ages of onset. We included 10 early-onset and 10 late-onset patients with PD and age-matched healthy controls (HCs). We used mass cytometry to select specific immune cell subsets and evaluate intracellular cytokine and chemokine expression. Statistical tests included t-tests, analysis of variance, bivariate correlation analysis, and linear regression analysis. Compared with HCs, patients with PD exhibited significantly decreased intracellular pro-inflammatory cytokines and chemokines in selected clusters (e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-1ß, and CC-chemokine ligand (CCL)17). Specific cytokines and cell clusters were associated with clinical symptoms. TNF-α played an important role in cognitive impairment. Intracellular TNF-α levels in the naïve CD8+ T-cell cluster C16 (CD57- naïve CD8+ T) and natural killer (NK) cell cluster C32 (CD57- CD28- NK) were negatively correlated with Montreal Cognitive Assessment scores. The C16 cluster affected cognitive function and motor symptoms. Increased TNF-α and decreased interferon-γ expression in C16 correlated with increased Unified Parkinson's Disease Rating Scale III scores in patients with PD. In summary, we developed a more detailed cytokine and chemokine map of peripheral specific CD8+ T cell and NK cell subsets, which revealed disrupted secretory function in patients with PD and provided unique clues for further mechanistic exploration.

8.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239999

RESUMEN

DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining. Mechanistically, DJ-1 interacts directly with PARP1, a nuclear enzyme essential for genomic stability, and stimulates its enzymatic activity during DNA repair. Importantly, cells from PD patients with the DJ-1 mutation also have defective PARP1 activity and impaired repair of DSBs. In summary, our findings uncover a novel function of nuclear DJ-1 in DNA repair and genome stability maintenance, and suggest that defective DNA repair may contribute to the pathogenesis of PD linked to DJ-1 mutations.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Reparación del ADN por Unión de Extremidades , Daño del ADN , Mutación , Inestabilidad Genómica , Poli(ADP-Ribosa) Polimerasa-1/genética
9.
Neurology ; 101(4): e399-e409, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37225432

RESUMEN

BACKGROUND AND OBJECTIVES: Observational studies suggested a bidirectional relationship between Alzheimer disease (AD) and epilepsies. However, it remains debated whether and in which direction a causal association exists. This study aims to explore the relationship between genetic predisposition to AD, CSF biomarkers of AD (ß-amyloid [Aß] 42 and phosphorylated tau [pTau]), and epilepsies with 2-sample, bidirectional Mendelian randomization (MR) method. METHODS: Genetic instruments were obtained from large-scale genome-wide meta-analysis of AD (Ncase/proxy = 111,326, Ncontrol = 677,663), CSF biomarkers of AD (Aß42 and pTau, N = 13,116), and epilepsy (Ncase = 15,212, Ncontrol = 29,677) of European ancestry. Epilepsy phenotypes included all epilepsy, generalized epilepsy, focal epilepsy, childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, generalized epilepsy with tonic-clonic seizures, focal epilepsy with hippocampal sclerosis (focal HS), and lesion-negative focal epilepsy. Main analyses were performed using generalized summary data-based MR. Sensitivity analyses included inverse variance weighted, MR pleiotropy residual sum and outlier, MR-Egger, weighted mode, and weighted median. RESULTS: For forward analysis, genetic predisposition to AD was associated with an increased risk of generalized epilepsy (odds ratio [OR] 1.053, 95% CI 1.002-1.105, p = 0.038) and focal HS (OR 1.013, 95% CI 1.004-1.022, p = 0.004). These associations were consistent across sensitivity analyses and replicated using a separate set of genetic instruments from another AD genome-wide association study. For reverse analysis, there was a suggestive effect of focal HS on AD (OR 3.994, 95% CI 1.172-13.613, p = 0.027). In addition, genetically predicted lower CSF Aß42 was associated with an increased risk of generalized epilepsy (ß = 0.090, 95% CI 0.022-0.158, p = 0.010). DISCUSSION: This MR study supports a causal link between AD, amyloid pathology, and generalized epilepsy. This study also indicates a close association between AD and focal HS. More effort should be made to screen seizure in AD, unravel its clinical implications, and explore its role as a putative modifiable risk factor.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia Tipo Ausencia , Epilepsia Generalizada , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Convulsiones , Polimorfismo de Nucleótido Simple
10.
Mov Disord ; 38(7): 1273-1281, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166002

RESUMEN

BACKGROUND: The degeneration of nigral (A9) dopaminergic (DA) neurons results in cardinal motor symptoms that define Parkinson's disease (PD). Loss-of-function mutations in parkin are linked to a rare form of early-onset PD that is inherited recessively. OBJECTIVE: We generated isogenic human A9 DA neurons with or without parkin mutations to establish the causal relationship between parkin mutations and the dysfunction of human A9 DA neurons. METHODS: Using TALEN (transcription activator-like effector nuclease)- or CRISPR/Cas9-mediated gene targeting, we produced two isogenic pairs of naivetropic induced pluripotent stem cells (iPSCs) by repairing exon 3 deletions of parkin in iPSCs derived from a PD patient and by introducing the PD-linked A82E mutation into iPSCs from a healthy subject. The four lines of isogenic iPSCs were differentiated to A9 DA neurons, which fired spontaneous pacemaking action potentials (AP) dependent on L-type Ca2+ channels. RESULTS: The frequency of the pacemaking APs was significantly reduced by parkin mutations introduced to normal neurons. Consistent with this, isogenic repair of parkin mutations significantly increased the frequency from that observed in patient-derived neurons. CONCLUSIONS: The results show that parkin maintains robust pacemaking in human iPSC-derived A9 DA neurons. The function is critical to normal DA transmission required for controlling voluntary locomotor activities. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Ubiquitina-Proteína Ligasas/genética
11.
CNS Neurosci Ther ; 29(9): 2645-2655, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032643

RESUMEN

BACKGROUND: We previously identified a significant association between Aquaporin-4 (AQP4) and Parkinson's disease (PD). OBJECTIVES: To identify whether AQP4 single-nucleotide polymorphism (SNP) rs162009 affects regional brain activity and clinical phenotypes of PD. METHODS: Low-frequency fluctuation amplitude (ALFF) was used to evaluate spontaneous brain activity, regional homogeneity (ReHo) was used to evaluate the pace of activity of adjacent voxel regions, and degree centrality (DC) was used to describe the functional connection strength between a voxel and the whole brain. Disease severity and PD stage were assessed with the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr scales, and the Montreal Cognitive Assessment (MoCA) was used to assess the participants' cognitive function. RESULTS: In patients with PD, AQP4 SNP rs162009 was associated with a significant higher ALFF in the right caudate head and the left occipital gyrus, a significant lower ReHo in the right inferior frontal gyrus, a different DC in the right frontal gyrus, the left calcarine, and the right inferior temporal gyrus. A significant positive correlation between ALFF in the right caudate head and MoCA in rs162009_A carriers was found. A significant negative correlation between the DC at the left calcarine and MDS-UPDRS and MDS-UPDRS III in rs162009_A noncarriers was found. CONCLUSIONS: Our study further revealed the effect of AQP4 SNP rs162009 on brain activity in PD, indicating that AQP4 may play an important role in PD neuropathophysiology.


Asunto(s)
Enfermedad de Parkinson , Humanos , Acuaporina 4/genética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética
12.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047285

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/genética , Daño del ADN , Reparación del ADN
13.
Aging Cell ; 22(6): e13834, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029500

RESUMEN

Microglial hyperactivation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome contributes to the pathogenesis of Parkinson's disease (PD). Recently, neuronally expressed NLRP3 was demonstrated to be a Parkin polyubiquitination substrate and a driver of neurodegeneration in PD. However, the role of Parkin in NLRP3 inflammasome activation in microglia remains unclear. Thus, we aimed to investigate whether Parkin regulates NLRP3 in microglia. We investigated the role of Parkin in NLRP3 inflammasome activation through the overexpression of Parkin in BV2 microglial cells and knockout of Parkin in primary microglia after lipopolysaccharide (LPS) treatment. Immunoprecipitation experiments were conducted to quantify the ubiquitination levels of NLRP3 under various conditions and to assess the interaction between Parkin and NLRP3. In vivo experiments were conducted by administering intraperitoneal injections of LPS in wild-type and Parkin knockout mice. The Rotarod test, pole test, and open field test were performed to evaluate motor functions. Immunofluorescence was performed for pathological detection of key proteins. Overexpression of Parkin mediated NLRP3 degradation via K48-linked polyubiquitination in microglia. The loss of Parkin activity in LPS-induced mice resulted in excessive microglial NLRP3 inflammasome assembly, facilitating motor impairment, and dopaminergic neuron loss in the substantia nigra. Accelerating Parkin-induced NLRP3 degradation by administration of a heat shock protein (HSP90) inhibitor reduced the inflammatory response. Parkin regulates microglial NLRP3 inflammasome activation through polyubiquitination and alleviates neurodegeneration in PD. These results suggest that targeting Parkin-mediated microglial NLRP3 inflammasome activity could be a potential therapeutic strategy for PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Microglía/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos NOD , Ratones Noqueados , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ratones Endogámicos C57BL
14.
J Mol Neurosci ; 73(4-5): 205-213, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929462

RESUMEN

Genetic factors play a major role in essential tremor (ET) pathogenesis. This study aimed to assess variant burden in ET-associated genes in a relatively large Chinese population cohort. We genotyped 27 single nucleotide polymorphisms (SNPs) previously reported to be associated with ET by multiplex PCR amplicon sequencing assay in 488 familial and sporadic ET patients and 514 healthy controls (HCs). Then, we performed allelic and genotypic association test by Pearson chi-square test or Fisher's exact test. A total of 1002 samples were included in our analysis, consisting of 488 ET patients and 514 sex and age-matched HCs. For rs10937625, the C allele was linked to increased risk of ET (P = 0.019, OR = 1.503, 95% CI = 1.172-1.928). The carriers of the C/C homozygote and C/T heterozygote showed a significantly higher risk of ET, compared with the T/T homozygote under the dominant model (P = 0.019, OR = 1.628, 95% CI = 1.221-2.170). There were no statistically significant differences in the frequency of other SNPs between ET patients and healthy controls. Rs10937625 (STK32B) may increase the risk of ET in eastern Chinese population.


Asunto(s)
Temblor Esencial , Predisposición Genética a la Enfermedad , Humanos , Estudios de Casos y Controles , China/epidemiología , Pueblos del Este de Asia , Temblor Esencial/genética , Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética
15.
J Cereb Blood Flow Metab ; 43(8): 1328-1339, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36927139

RESUMEN

Dysfunction of the glymphatic system, an intracranial clearance pathway that drains misfolded proteins, has been implicated in the onset of Parkinson's disease (PD). Recently, the coupling strength of global blood-oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics have been suggested to be an indicator of glymphatic function. Using resting-state functional magnetic resonance imaging (MRI), we quantified gBOLD-CSF coupling strength as the cross-correlation between baseline gBOLD and CSF inflow signals to evaluate glymphatic function and its association with the clinical manifestations of PD. We found that gBOLD-CSF coupling in drug-naïve PD patients was significantly weaker than that in normal controls, but significantly stronger in patients less affected by sleep disturbances than in those more affected by sleep disturbances, based on the PD sleep scale. Furthermore, we collected longitudinal data from patients and found that baseline gBOLD-CSF coupling negatively correlated with the rate of change over time, but positively correlated with the rate of change in UPDRS-III scores. In conclusion, severe gBOLD-CSF decoupling in PD patients may reflect longitudinal motor impairment, thereby providing a potential marker of glymphatic dysfunction in PD.


Asunto(s)
Sistema Glinfático , Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Sueño
16.
J Neuroinflammation ; 20(1): 26, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740674

RESUMEN

BACKGROUND: Inflammasome activation has a pathogenic role in Parkinson's disease (PD). Up-regulated expressions of inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and assembly of ASC specks have been observed in postmortems of human PD brains and experimental PD models. Extracellular ASC specks behave like danger signals and sustain prolonged inflammasome activation. However, the contribution of ASC specks in propagation of inflammasome activation and pathological progression in PD has not been fully established. METHODS: Herein, we used human A53T mutant α-synuclein preformed fibrils (PFFs)-stimulated microglia in vitro and unilateral striatal stereotaxic injection of PFFs-induced mice model of PD in vivo, to investigate the significance of ASC specks in PD pathological progression. Rotarod and open-field tests were performed to measure motor behaviors of indicated mice. Changes in the molecular expression were evaluated by immunofluorescence and immunoblotting (IB). Intracellular knockdown of the ASC in BV2 cells was performed using si-RNA. Microglial and neuronal cells were co-cultured in a trans-well system to determine the effects of ASC knockdown on cytoprotection. RESULTS: We observed a direct relationship between levels of ASC protein and misfolded α­synuclein aggregates in PD mice brains. ASC specks amplified NLRP3 inflammasome activation driven by α-synuclein PFFs stimulation, which aggravated reactive microgliosis and accelerated α­synuclein pathology, dopaminergic neurodegeneration and motor deficits. Endogenous ASC knockdown suppressed microglial inflammasome activation and neuronal α­synuclein aggregation. CONCLUSIONS: In conclusion, our study elucidated that ASC specks contribute to the propagation of inflammasome activation-associated α­synuclein pathology in PD, which forms the basis for targeting ASC as a potential therapy for PD.


Asunto(s)
Inflamasomas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo
17.
Neurosurgery ; 92(4): 812-819, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729808

RESUMEN

BACKGROUND: The cost-effectiveness of deep brain stimulation (DBS) is more favorable than best medical treatment (BMT) for advanced Parkinson disease (PD) in developed countries. However, it remains unclear in developing countries, where the cost of DBS may not be reimbursed by health care system. OBJECTIVE: To model and evaluate the long-term cost-effectiveness of DBS for advanced PD in China from a patient payer perspective. METHODS: We developed a Markov model representing the clinical progress of PD to predict the disease progression and related medical costs in a 15-year time horizon. The incremental cost-effectiveness ratio (ICER) and net benefit were used to evaluate the cost-effectiveness of DBS vs BMT. RESULTS: DBS treatment led to discounted total costs of ¥370 768 ($56 515.20) (95% CI, ¥369 621.53-371 914.88), compared with ¥48 808 ($7439.68) (95% CI, ¥48 502.63-49 114.21) for BMT, with an additional 1.51 quality-adjusted life years gained, resulting in an ICER of ¥213 544 ($32 549.96)/quality-adjusted life years (95% CI, ¥208 177.35-218 910.10). Sensitivity analysis showed that DBS-related cost has the most substantial impact on ICER. Nation-wide net benefit of BMT and DBS were ¥33 819 ($5154.94) (95% CI, ¥30 211.24-37 426) and ¥30 361 ($4627.85) (95% CI, ¥25 587.03-39 433.66), respectively. Patient demographic analysis showed that more favorable DBS cost-effectiveness was associated with younger age and less severe disease stage. CONCLUSION: DBS is cost-effective for patients with advanced PD over a 15-year time horizon in China. However, compared with developed countries, DBS remains a substantial economic burden for patients when no reimbursement is provided. Our findings may help inform cost-effectiveness-based decision making for clinical care of PD in developing countries.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Análisis Costo-Beneficio , Estimulación Encefálica Profunda/métodos , Países en Desarrollo , Calidad de Vida , China/epidemiología , Años de Vida Ajustados por Calidad de Vida
18.
J Neurol ; 270(4): 2106-2116, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609498

RESUMEN

OBJECTIVE: Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS: The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS: The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION: Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.


Asunto(s)
Temblor Esencial , Sustancia Blanca , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
19.
Eur J Neurol ; 30(11): 3462-3470, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36694359

RESUMEN

BACKGROUND AND PURPOSE: Intestinal inflammation and gut microbiota dysbiosis contribute to Parkinson disease (PD) pathogenesis, and growing evidence suggests associations between inflammatory bowel diseases (IBD) and PD. Considered as markers of chronic gastrointestinal inflammation, elevated serum anti-Saccharomyces cerevisiae antibody (ASCA) levels, against certain gut fungal components, are related to IBD, but their effect on PD is yet to be investigated. METHODS: Serum ASCA IgG and IgA levels were measured using an enzyme-linked immunosorbent assay, and the gut mycobiota communities were investigated using ITS2 sequencing and analyzed using the Qiime pipeline. RESULTS: The study included 393 subjects (148 healthy controls [HCs], 140 with PD, and 105 with essential tremor [ET]). Both serum ASCA IgG and IgA levels were significantly higher in the PD group than in the ET and HC groups. Combining serum ASCA levels and the occurrence of constipation could discriminate patients with PD from controls (area under the curve [AUC] = 0.81, 95% confidence interval [CI] = 0.76-0.86) and from patients with ET (AUC = 0.85, 95% CI = 0.79-0.89). Furthermore, the composition of the gut fungal community differed between the PD and HC groups. The relative abundances of Saccharomyces cerevisiae, Aspergillus, Candida solani, Aspergillus flavus, ASV601_Fungi, ASV866_Fungi, and ASV755_Fungi were significantly higher in the PD group, and enriched Malassezia restricta was found in the HC group. CONCLUSIONS: Our study identified elevated serum ASCA levels and enriched gut Saccharomyces cerevisiae in de novo PD.

20.
Curr Neuropharmacol ; 21(3): 536-546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36582064

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease with a significant public health burden. It is characterized by the gradual degeneration of dopamine neurons in the central nervous system. Although symptomatic pharmacological management remains the primary therapeutic method for PD, clinical experience reveals significant inter-individual heterogeneity in treatment effectiveness and adverse medication responses. The mechanisms behind the observed interindividual variability may be elucidated by investigating the role of genetic variation in human-to-human variances in medication responses and adverse effects. OBJECTIVE: This review aims to explore the impact of gene polymorphism on the efficacy of antiparkinsonian drugs. The identification of factors associated with treatment effectiveness variability might assist the creation of a more tailored pharmacological therapy with higher efficacy, fewer side outcomes, and cheaper costs. METHODS: In this review, we conducted a thorough search in databases such as PubMed, Web of Science, and Google Scholar, and critically examined current discoveries on Parkinson's disease pharmacogenetics. The ethnicity of the individuals, research methodologies, and potential bias of these studies were thoroughly compared, with the primary focus on consistent conclusions. RESULTS: This review provides a summary of the existing data on PD pharmacogenetics, identifies its limitations, and offers insights that may be beneficial for future research. Previous studies have investigated the impact of gene polymorphism on the effectiveness and adverse effects of levodopa. The trendiest genes are the COMT gene, DAT gene, and DRD2 gene. However, limited study on other anti-Parkinson's drugs has been conducted. CONCLUSION: Therefore, In order to develop an individualized precision treatment for PD, it is an inevitable trend to carry out multi-center, prospective, randomized controlled clinical trials of PD pharmacogenomics covering common clinical anti-PD drugs in large, homogeneous cohorts.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Farmacogenética/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Estudios Prospectivos , Antiparkinsonianos/uso terapéutico , Levodopa/uso terapéutico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...