Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(14): 25219-25233, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237057

RESUMEN

We report net gain measurements at room temperature in Al0.07Ga0.93N/GaN 10-period multi-quantum well layers emitting at 367 nm, using the variable stripe length method. The separate confinement heterostructure was designed targeting electron-beam pumped lasing at 10 kV. The highest net gain value was 131 cm-1, obtained at the maximum pumping power density of the experimental setup (743 kW/cm2). The net gain threshold was attained at 218 kW/cm2 using 193 nm optical pumping. From these experiments, we predict an electron-beam-pumped lasing threshold of 370 kW/cm2 at room temperature, which is compatible with the use of compact cathodes (e.g. carbon nanotubes). In some areas of the sample, we observed an anomalous amplification of the photoluminescence intensity that occurs for long stripe lengths (superior to 400 µm) and high pumping power (superior to 550 kW/cm2), leading to an overestimation of the net gain value. We attribute such a phenomenon to the optical feedback provided by the reflection from cracks, which were created during the epitaxial growth due to the strong lattice mismatch between different layers.

2.
Opt Express ; 29(9): 13084-13093, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985051

RESUMEN

We present a study of undoped AlGaN/GaN separate confinement heterostructures designed to operate as electron beam pumped ultraviolet lasers. We discuss the effect of spontaneous and piezoelectric polarization on carrier diffusion, comparing the results of cathodoluminescence with electronic simulations of the band structure and Monte Carlo calculations of the electron trajectories. Carrier collection is significantly improved using an asymmetric graded-index separate confinement heterostructure (GRINSCH). The graded layers avoid potential barriers induced by polarization differences in the heterostructure and serve as strain transition buffers which reduce the mosaicity of the active region and the linewidth of spontaneous emission.

3.
Sci Rep ; 6: 35260, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731379

RESUMEN

Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

4.
Nanotechnology ; 24(43): 435203, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24107321

RESUMEN

We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ~20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σ(A) ~ 20 ppm for the FET detection and σ(A) ~ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

5.
Nature ; 494(7438): 455-8, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23446417

RESUMEN

New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.

6.
ACS Nano ; 6(8): 7463-71, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22830630

RESUMEN

This paper explores the field emission (FE) properties of highly crystalline Si nanowires (NWs) with controlled surface passivation. The NWs were batch-grown by the vapor-liquid-solid process using Au catalysts with no intentional doping. The FE current-voltage characteristics showed quasi-ideal current saturation that resembles those predicted by the basic theory for emission from semiconductors, even at room temperature. In the saturation region, the currents were extremely sensitive to temperature and also increased linearly with voltage drop along the nanowire. The latter permits the estimation of the doping concentration and the carrier lifetime, which is limited by surface recombination. The conductivity could be tuned over 2 orders of magnitude by in situ hydrogen passivation/desorption cycles. This work highlights the role of dangling bonds in surface leakage currents and demonstrates the use of hydrogen passivation for optimizing the FE characteristics of Si NWs.


Asunto(s)
Cristalización/métodos , Hidrógeno/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Silicio/química , Conductividad Eléctrica , Transporte de Electrón , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
7.
Small ; 6(9): 1060-5, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20394067

RESUMEN

Electromechanical resonators are a key element in radio-frequency telecommunication devices and thus new resonator concepts from nanotechnology can readily find important industrial opportunities. Here, the successful experimental realization of AM, FM, and digital demodulation with suspended single-walled carbon-nanotube resonators in a field-effect transistor configuration is reported. The crucial role played by the electromechanical resonance in demodulation is clearly demonstrated. The FM technique is shown to lead to the suppression of unwanted background signals and the reduction of noise for a better detection of the mechanical motion of nanotubes. The digital data-transfer rate of standard cell-phone technology is within the reach of these devices.


Asunto(s)
Teléfono Celular , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Oscilometría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Telecomunicaciones/instrumentación , Cristalización/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula
8.
Nano Lett ; 9(8): 2961-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19719112

RESUMEN

We use field emission microscopy (FEM) to observe directly the growths of individual carbon nanotubes (CNTs) from the nucleation stage and discover that the CNTs often rotate axially during growth, thus supporting a recently proposed "screw-dislocation-like" (SDL) model. One particularly revealing case is emphasized here in which the CNT turned approximately 180 times during its 11 min growth. Even more remarkable is the frame-by-frame analysis of the video which shows that the rotation proceeds by discrete steps with about approximately 24 per rotation, half the number of atoms on the circumferences of common single wall carbon nanotubes (SWNTs). The conclusion is that we directly observed the SDL growth of a SWNT one carbon dimer at a time. This observation should aid researchers to precisely understand and control the growth of SWNTs.

9.
Nano Lett ; 7(8): 2252-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17608540

RESUMEN

We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.


Asunto(s)
Instalación Eléctrica/instrumentación , Campos Electromagnéticos , Nanoestructuras/química , Nanotecnología/instrumentación , Nanotubos/química , Oscilometría/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Oscilometría/métodos , Tamaño de la Partícula , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA