Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 119: 23-31, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34332886

RESUMEN

While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.


Asunto(s)
Adipogénesis/fisiología , Músculo Esquelético/metabolismo , Unión Neuromuscular/patología , Animales , Diferenciación Celular , Homeostasis , Humanos , Ratones , Ratas
2.
Cell Death Differ ; 23(11): 1839-1849, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27447110

RESUMEN

Autophagy is emerging as a key regulatory process during skeletal muscle development, regeneration and homeostasis, and deregulated autophagy has been implicated in muscular disorders and age-related muscle decline. We have monitored autophagy in muscles of mdx mice and human Duchenne muscular dystrophy (DMD) patients at different stages of disease. Our data show that autophagy is activated during the early, compensatory regenerative stages of DMD. A progressive reduction was observed during mdx disease progression, in coincidence with the functional exhaustion of satellite cell-mediated regeneration and accumulation of fibrosis. Moreover, pharmacological manipulation of autophagy can influence disease progression in mdx mice. Of note, studies performed in regenerating muscles of wild-type mice revealed an essential role of autophagy in the activation of satellite cells upon muscle injury. These results support the notion that regeneration-associated autophagy contributes to the early compensatory stage of DMD progression, and interventions that extend activation of autophagy might be beneficial in the treatment of DMD. Thus, autophagy could be a 'disease modifier' targeted by interventions aimed to promote regeneration and delay disease progression in DMD.


Asunto(s)
Autofagia , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Regeneración , Células Satélite del Músculo Esquelético/patología , Animales , Biopsia , Niño , Preescolar , Progresión de la Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología
3.
Cell Death Dis ; 6: e1830, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26203859

RESUMEN

Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical exercise.


Asunto(s)
Eosinófilos/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Adipocitos/citología , Adipocitos/inmunología , Adipocitos/metabolismo , Comunicación Celular , Diferenciación Celular , Eosinófilos/citología , Eosinófilos/inmunología , Fibroblastos/citología , Fibroblastos/inmunología , Fibroblastos/metabolismo , Homeostasis , Humanos , Macrófagos/citología , Macrófagos/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Desarrollo de Músculos/fisiología , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/patología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/inmunología
5.
Oncogene ; 33(32): 4173-84, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24213577

RESUMEN

The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Factores de Transcripción Paired Box/metabolismo , Complejo Represivo Polycomb 2/fisiología , Rabdomiosarcoma Alveolar/metabolismo , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Adolescente , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Niño , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Proteína Forkhead Box O1 , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Homeostasis , Humanos , Masculino , Proteínas Musculares/fisiología , Factor de Transcripción PAX3 , Proteínas Ligasas SKP Cullina F-box/fisiología
6.
Rare Dis ; 2(1): e974969, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26942105

RESUMEN

Recent studies have revealed the contribution of fibro-adipogenic progenitors (FAPs) to the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). While FAPs direct compensatory regeneration at early stages of disease, as the disease progresses they contribute to the progressive replacement of contractile myofibers with fibrotic scars and fatty infiltration. Using the mouse model of DMD - the mdx mice - we have recently reported that FAPs mediate the ability of HDAC inhibitors (HDACi) to promote muscle regeneration and prevent fibro-adipogenic degeneration at early stages of disease. This effect is mediated by the induction of myomiRs that, in turn, target the SWI/SNF components BAF60A and B, thereby favoring the formation of BAF60C-based SWI/SNF complex, which directs the switch from the fibro-adipogenic to the myogenic lineage. Here we show direct evidence of induction of miR-206 and BAF60C, and reduction of BAF60A, in FAPs isolated from mdx muscles exposed to the HDACi Trichostatin A (TSA). We also discuss how increased expression of myomiRs in dystrophic muscles can be integrated with circulating myomiRs to provide accurate biomarkers of disease progression and response to treatment.

7.
Cell Death Differ ; 20(12): 1664-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056763

RESUMEN

Previous works have established a unique function of MyoD in the control of muscle gene expression during DNA damage response in myoblasts. Phosphorylation by DNA damage-activated ABL tyrosine kinase transiently inhibits MyoD-dependent activation of transcription in response to genotoxic stress. We show here that ABL-MyoD signaling is also an essential component of the DNA repair machinery in myoblasts exposed to genotoxic stress. DNA damage promoted the recruitment of MyoD to phosphorylated Nbs1 (pNbs1)-containing repair foci, and this effect was abrogated by either ABL knockdown or the ABL kinase inhibitor imatinib. Upon DNA damage, MyoD and pNbs1 were detected on the chromatin to MyoD target genes without activating transcription. DNA damage-mediated tyrosine phosphorylation was required for MyoD recruitment to target genes, as the ABL phosphorylation-resistant MyoD mutant (MyoD Y30F) failed to bind the chromatin following DNA damage, while retaining the ability to activate transcription in response to differentiation signals. Moreover, MyoD Y30F exhibited an impaired ability to promote repair in a heterologous system, as compared with MyoD wild type (WT). Consistently, MyoD-null satellite cells (SCs) displayed impaired DNA repair that was rescued by reintroduction of MyoD WT but not by MyoD Y30F. In addition, inhibition of ABL kinase prevented MyoD WT-mediated rescue of DNA repair in MyoD-null SCs. These results identify an unprecedented contribution of MyoD to DNA repair and suggest that ABL-MyoD signaling coordinates DNA repair and transcription in myoblasts.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Mutación/genética , Mioblastos Esqueléticos/citología , Reacción en Cadena de la Polimerasa , Fase S , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Transfección
8.
Nat Med ; 12(10): 1147-50, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980968

RESUMEN

Pharmacological interventions that increase myofiber size counter the functional decline of dystrophic muscles. We show that deacetylase inhibitors increase the size of myofibers in dystrophin-deficient (MDX) and alpha-sarcoglycan (alpha-SG)-deficient mice by inducing the expression of the myostatin antagonist follistatin in satellite cells. Deacetylase inhibitor treatment conferred on dystrophic muscles resistance to contraction-coupled degeneration and alleviated both morphological and functional consequences of the primary genetic defect. These results provide a rationale for using deacetylase inhibitors in the pharmacological therapy of muscular dystrophies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Músculos/enzimología , Músculos/patología , Distrofia Muscular Animal/tratamiento farmacológico , Animales , Distrofina/genética , Fibrosis/patología , Folistatina/metabolismo , Ácidos Hidroxámicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculos/efectos de los fármacos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Fenilbutiratos/farmacología , Sarcoglicanos/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/enzimología , Ácido Valproico/farmacología
9.
Mol Cell ; 8(4): 885-97, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11684023

RESUMEN

We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Proteína MioD/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Medio de Cultivo Libre de Suero , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Factores de Transcripción MEF2 , Microscopía Fluorescente , Modelos Biológicos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Proteína MioD/genética , Factores Reguladores Miogénicos , Fosforilación , Pruebas de Precipitina , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción/metabolismo
10.
Front Biosci ; 6: D1024-47, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11532612

RESUMEN

Chromatin remodeling and protein acetylation control gene expression and consequently regulate cellular growth and differentiation. Here we review the role of individual chromatin remodeling factors, acetyltransferases and deacetylases in the establishment and maintenance of different cell lineages and in the genesis of some human diseases.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Proteínas/metabolismo , Acetilación , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos
11.
J Cell Physiol ; 185(2): 155-73, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11025438

RESUMEN

Skeletal muscle differentiation is influenced by multiple pathways, which regulate the activity of myogenic regulatory factors (MRFs)-the myogenic basic helix-loop-helix proteins and the MEF2-family members-in positive or negative ways. Here we will review and discuss the network of signals that regulate MRF function during myocyte proliferation, differentiation, and post-mitotic growth. Elucidating the mechanisms governing muscle-specific transcription will provide important insight in better understanding the embryonic development of muscle at the molecular level and will have important implications in setting out strategies aimed at muscle regeneration. Since the activity of MRFs are compromised in tumors of myogenic derivation-the rhabdomyosarcomas-the studies summarized in this review can provide a useful tool to uncover the molecular basis underlying the formation of these tumors.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Factores Reguladores Miogénicos/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Músculos/fisiología , Proteína MioD/genética , Proteína MioD/fisiología , Fosforilación , Rabdomiosarcoma/fisiopatología
12.
Mol Cell Biol ; 20(11): 3951-64, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10805738

RESUMEN

The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogen-activated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs from those triggered by stress and cytokines, because it is not linked to Jun-N-terminal kinase stimulation and is maintained during the whole process of myotube formation. Moreover, p38 activation is independent of a parallel promyogenic pathway stimulated by insulin-like growth factor 1. Inhibition of p38 prevents the differentiation program in myogenic cell lines and human primary myocytes. Conversely, deliberate activation of endogenous p38 stimulates muscle differentiation even in the presence of antimyogenic cues. Much evidence indicates that p38 is an activator of MyoD: (i) p38 kinase activity is required for the expression of MyoD-responsive genes, (ii) enforced induction of p38 stimulates the transcriptional activity of a Gal4-MyoD fusion protein and allows efficient activation of chromatin-integrated reporters by MyoD, and (iii) MyoD-dependent myogenic conversion is reduced in mouse embryonic fibroblasts derived from p38alpha(-/-) embryos. Activation of p38 also enhances the transcriptional activities of myocyte enhancer binding factor 2A (MEF2A) and MEF2C by direct phosphorylation. With MEF2C, selective phosphorylation of one residue (Thr293) is a tissue-specific activating signal in differentiating myocytes. Finally, ERK shows a biphasic activation profile, with peaks of activity in undifferentiated myoblasts and postmitotic myotubes. Importantly, activation of ERK is inhibitory toward myogenic transcription in myoblasts but contributes to the activation of myogenic transcription and regulates postmitotic responses (i.e., hypertrophic growth) in myotubes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Activación Enzimática , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Isoenzimas/metabolismo , Proteínas de Dominio MADS , Factores de Transcripción MEF2 , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos
13.
Genes Dev ; 14(5): 574-84, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10716945

RESUMEN

MyoD inhibits cell proliferation and promotes muscle differentiation. A paradoxical feature of rhabdomyosarcoma (RMS), a tumor arising from muscle precursors, is the block of the differentiation program and the deregulated proliferation despite MyoD expression. A deficiency in RMS of a factor required for MyoD activity has been implicated by previous studies. We report here that p38 MAP kinase (MAPK) activation, which is essential for muscle differentiation, is deficient in RMS cells. Enforced induction of p38 MAPK by an activated MAPK kinase 6 (MKK6EE) restored MyoD function and enhanced MEF2 activity in RMS deficient for p38 MAPK activation, leading to growth arrest and terminal differentiation. Stress and cytokines could activate the p38 MAPK in RMS cells, however, these stimuli did not promote differentiation, possibly because they activated p38 MAPK only transiently and they also activated JNK, which could antagonize differentiation. Thus, the selective and sustained p38 MAPK activation, which is distinct from the stress-activated response, is required for differentiation and can be disrupted in human tumors.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular , Músculos/citología , Rabdomiosarcoma/patología , Animales , División Celular , Línea Celular , Activación Enzimática , Inducción Enzimática , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , MAP Quinasa Quinasa 6 , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína MioD/metabolismo , Proteínas Recombinantes/metabolismo , Rabdomiosarcoma/enzimología , Transfección , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos
14.
Mol Cell Biol ; 19(7): 5203-17, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10373569

RESUMEN

During the terminal differentiation of skeletal myoblasts, the activities of myogenic factors regulate not only tissue-specific gene expressions but also the exit from the cell cycle. The induction of cell cycle inhibitors such as p21 and pRb has been shown to play a prominent role in the growth arrest of differentiating myoblasts. Here we report that, at the onset of differentiation, activation by MyoD of the Rb, p21, and cyclin D3 genes occurs in the absence of new protein synthesis and with the requirement of the p300 transcriptional coactivator. In differentiated myocytes, cyclin D3 also becomes stabilized and is found nearly totally complexed with unphosphorylated pRb. The detection of complexes containing cyclin D3, cdk4, p21, and PCNA suggests that cdk4, along with PCNA, may get sequestered into high-order structures held together by pRb and cyclin D3. Cyclin D3 up-regulation and stabilization is inhibited by adenovirus E1A, and this correlates with the ability of E1A to promote pRb phosphorylation; conversely, the overexpression of cyclin D3 in differentiated myotubes counteracts the E1A-mediated reactivation of DNA synthesis. These results indicate that cyclin D3 critically contributes to the irreversible exit of differentiating myoblasts from the cell cycle.


Asunto(s)
Ciclinas/fisiología , Músculo Esquelético/citología , Proteína MioD/metabolismo , Proteínas Proto-Oncogénicas , Proteínas E1A de Adenovirus/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Ciclina D3 , Quinasa 4 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteína p300 Asociada a E1A , Humanos , Ratones , Proteína MioD/genética , Proteínas Nucleares/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transactivadores/metabolismo
15.
Cell ; 96(3): 405-13, 1999 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-10025406

RESUMEN

Histone acetyltransferases (HAT) play a critical role in transcriptional control by relieving repressive effects of chromatin, and yet how HATs themselves are regulated remains largely unknown. Here, it is shown that Twist directly binds two independent HAT domains of acetyltransferases, p300 and p300/CBP-associated factor (PCAF), and directly regulates their HAT activities. The N terminus of Twist is a primary domain interacting with both acetyltransferases, and the same domain is required for inhibition of p300-dependent transcription by Twist. Adenovirus E1A protein mimics the effects of Twist by inhibiting the HAT activities of p300 and PCAF. These findings establish a cogent argument for considering the HAT domains as a direct target for acetyltransferase regulation by both a cellular transcription factor and a viral oncoprotein.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas E1A de Adenovirus/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transactivadores/metabolismo , Factores de Transcripción/fisiología , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/fisiología , Proteínas E1A de Adenovirus/metabolismo , Animales , Células COS , Células Cultivadas , Proteína p300 Asociada a E1A , Activación Enzimática , Histona Acetiltransferasas , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Oncogénicas Virales/metabolismo , Proteínas Oncogénicas Virales/fisiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína 1 Relacionada con Twist
16.
Mol Cell ; 4(5): 725-34, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10619020

RESUMEN

p300/CBP and PCAF coactivators have acetyltransferase activities and regulate transcription, cell cycle progression, and differentiation. They are both required for MyoD activity and muscle differentiation. Nevertheless, their roles must be different since the acetyltransferase activity of PCAF but not of p300 is involved in controlling myogenic transcription and differentiation. Here, we provide a molecular explanation of this phenomenon and report that MyoD is directly acetylated by PCAF at evolutionarily conserved lysines. Acetylated MyoD displays an increased affinity for its DNA target. Importantly, conservative substitutions of acetylated lysines with nonacetylatable arginines impair the ability of MyoD to stimulate transcription and to induce muscle conversion indicating that acetylation of MyoD is functionally critical.


Asunto(s)
Acetiltransferasas/metabolismo , Músculos/citología , Músculos/metabolismo , Proteína MioD/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Activación Transcripcional/genética , Acetilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Secuencia Conservada , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Fibroblastos/citología , Fibroblastos/metabolismo , Histona Acetiltransferasas , Lisina/genética , Lisina/metabolismo , Ratones , Desarrollo de Músculos , Músculos/enzimología , Proteína MioD/química , Proteína MioD/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/genética , Factores de Transcripción TCF , Proteína 1 Similar al Factor de Transcripción 7
17.
J Cell Biochem ; 71(4): 467-78, 1998 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9827693

RESUMEN

CDK9 has been recently shown to have increased kinase activity in differentiated cells in culture and a differentiated tissue-specific expression in the developing mouse. In order to identify factors that contribute to CDK9's differentiation-specific function, we screened a mouse embryonic library in the yeast two-hybrid system and found a tumor necrosis factor signal transducer, TRAF2, to be an interacting protein. CDK9 interacts with a conserved domain in the TRAF-C region of TRAF2, a motif that is known to bind other kinases involved in TRAF-mediated signaling. Endogenous interaction between the two proteins appears to be specific to differentiated tissue. TRAF2-mediated signaling may incorporate additional kinases to signal cell survival in myotubes, a cell type that is severely affected in TRAF2 knockout mice.


Asunto(s)
Músculo Esquelético/citología , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quinasa 9 Dependiente de la Ciclina , Humanos , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas/genética , Proteínas/genética , Proteínas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares , Factor 2 Asociado a Receptor de TNF , Factor de Necrosis Tumoral alfa/farmacología
18.
Cancer Res ; 58(7): 1325-31, 1998 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-9537223

RESUMEN

E2F/DP heterodimers play a pivotal role in the regulation of cell growth and differentiation. A decrease in E2F/DP activity occurs during cell cycle arrest and differentiation. However, very little is known about the specific role of the various E2F/DP members along the transition from proliferation to terminal differentiation. We have previously shown that E2F4 accounts for the vast majority of the endogenous E2F in differentiating muscle cells. Here, we show that E2F4, which lacks a nuclear localization signal (nls), is distributed in both the nucleus and the cytoplasm, in either asynchronously growing myoblasts or differentiated myotubes. E2F4 nuclear accumulation is induced by the binding in the cytoplasm with specific partners p107, pRb2/p130, and DP3delta, an nls-containing spliced form of DP3, which provide the nls. Although overexpression of E2F4/DP3delta reactivates the cell cycle in quiescent cells, the E2F4 nuclear accumulation induced by pRb2/p130 and p107 correlates with cell growth arrest Moreover, E2F4/DP3delta-induced cell cycle reactivation is efficiently counteracted by either p107 or pRb2/p130 overexpression. Reinduction in quiescent cells of DNA synthesis by E2F1/DP1 overexpression is abrogated by coexpression of pRb and is hampered by MyoD overexpression. Both pRb2/p130 and pRb, as well as MyoD, are up-regulated in myotubes. Accordingly, multinucleated myotubes, which are induced to reenter the S-phase by oncoviral proteins, are refractory to cell cycle reactivation by forced expression of E2F4/DP3delta or E2F1/DP1. Thus, E2F/DP repression represents only one of multiple redundant circuits that control the postmitotic state in terminally differentiated cells and that are targeted by adenovirus E1A and SV40 large T antigen.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Sustancias de Crecimiento/fisiología , Músculos/citología , Músculos/metabolismo , Factores de Transcripción/fisiología , Translocación Genética/fisiología , Animales , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ADN/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Dimerización , Factor de Transcripción E2F4 , Vectores Genéticos , Sustancias de Crecimiento/biosíntesis , Sustancias de Crecimiento/metabolismo , Ratones , Microinyecciones , Músculos/fisiología , Fracciones Subcelulares/metabolismo , Transactivadores/biosíntesis , Transactivadores/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Regulación hacia Arriba
19.
J Cell Biochem ; 66(1): 27-36, 1997 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9215525

RESUMEN

Doxorubicin (Dox, Adriamicin), a potent broad spectrum anthracycline anticancer drug, selectively inhibits muscle specific gene expression in cardiac cells in vivo and prevents terminal differentiation of skeletal muscle cells in vitro. By inducing the expression of the helix-loop-helix (HLH) transcriptional inhibitor ld2, Dox represses the myogenic function of the MyoD family of muscle regulatory factors (MRFs). In many cell types, terminal differentiation is coupled to an irreversible exit from the cell cycle and MyoD plays a critical role in the permanent cell cycle arrest of differentiating myocytes by upregulating the cyclin dependent kinase inhibitor (cdki) p21. Here, we correlate Dox effects on cell cycle with changes of E2F/DP complexes and activity in differentiating C2C12 myocytes. In Dox-treated quiescent myoblasts, which fail to differentiate into myotubes under permissive culture conditions, serum re-stimulation induces cyclin/cdk re-association on the E2F/DP complexes and this correlates with an evident increase in E2F/DP driven transcription and re-entry of myoblasts into the cell cycle. Despite Dox ability to activate the DNA-damage dependent p53/p21 pathway, when induced in the absence of MyoD or other MRFs, p21 fails to maintain the postmitotic state in Dox-treated myocytes induced to differentiate. Thus, uncoupling p21 induction and MyoD activity results in a serum-reversible cell cycle arrest, indicating that MRF specific activation of cdki(s) is required for permanent cell cycle arrest in differentiating muscle cells.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Proteínas Portadoras , Proteínas de Ciclo Celular , Ciclo Celular/efectos de los fármacos , Ciclinas/metabolismo , Doxorrubicina/farmacología , Músculos/citología , Proteína MioD/metabolismo , Proteínas Represoras , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción E2F , Proteína 2 Inhibidora de la Diferenciación , Ratones , Proteína 1 de Unión a Retinoblastoma , Factor de Transcripción DP1 , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
20.
Proc Natl Acad Sci U S A ; 94(15): 8162-7, 1997 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-9223332

RESUMEN

The human hepatitis B virus (HBV) protein pX is a multifunctional regulatory protein that is known to affect both transcription and cell growth. Here we describe induction of apoptosis in NIH 3T3 polyclonal cell lines upon stimulation of pX expression from a dexamethasone inducible mouse mammary tumor virus (MMTV)-X expression vector. The effect of long-term pX expression on the cell survival of mouse fibroblasts was confirmed in colony generation assays. This effect is not shared either by the other HBV products and it is c-myc mediated, as shown by the use of a dominant negative deletion mutant of c-myc. pX also sensitize cells to programmed cell death after exposure to DNA damaging agents. Taking advantage of stable transfectants carrying the p53val135 temperature-sensitive allele, we directly demonstrate that induction of apoptosis by pX requires p53. In p53 null mouse embryo fibroblasts pX activates transcription and confers an evident growth advantage without loss of cell viability. Although pX protein was not detectable in the experimental conditions we used, our results indicate that its expression affects both cell growth and cell death control.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica/genética , Antígenos de la Hepatitis B/genética , Transactivadores/genética , Proteína p53 Supresora de Tumor/genética , Células 3T3 , Animales , Supervivencia Celular/genética , Medio de Cultivo Libre de Suero , Replicación del ADN/genética , Ratones , Ratones Endogámicos BALB C , Activación Transcripcional , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA