Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 3): 127972, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944725

RESUMEN

The production of hydrophobic and oil resistant cellulosic fibers usually requires severe chemical treatments and generates toxic by-products. Alternative approaches such as biocatalysis use milder conditions; lipase-catalyzed methods for grafting nanocellulose with hydrophobic ester moieties have been reported. Here, we investigate the lipase-catalyzed esterification of cellulose fibers, in native form or pretreated with 1,4-ß-glucanases, and cellulose nanocrystals (CNC) in solvent-free conditions. The fibers were compared for degree of ester formation after incubation with methyl myristate and lipase at 50 °C. After washing, the grafting of fatty esters on cellulose was confirmed by ATR-FTIR and the degree of substitution determined by 13C CP/MAS NMR (from 0.04 up to DS 0.1) confirming successful esterification. Optical photothermal infrared (O-PTIR) spectroscopy showed strongly localized presence of ester moieties on cellulose. Functional properties mirrored the degree of substitution of the cellulose materials whereby cellulose esters made with glucanase-pretreatment produced the highest water contact angle of 117° ± 9 and esterified cellulose blended at 10 % w/w content in paper composites showed significant differences in hydrophobicity and lipophilicity compared to plain paper. The esterification of cellulose was completely reversed by lipase treatment in aqueous media. These ester-functionalized fibers show potential in a wide range of packaging applications.


Asunto(s)
Celulosa , Lipasa , Celulosa/química , Esterificación , Lipasa/química , Ésteres/química , Biocatálisis , Agua , Interacciones Hidrofóbicas e Hidrofílicas
2.
Commun Biol ; 6(1): 564, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237052

RESUMEN

Approximately 300,000 anterior cruciate ligament (ACL) tears occur annually in the United States, half of which lead to the onset of knee osteoarthritis within 10 years of injury. Repetitive loading is known to result in fatigue damage of both ligament and tendon in the form of collagen unravelling, which can lead to structural failure. However, the relationship between tissue's structural, compositional, and mechanical changes are poorly understood. Herein we show that repetitive submaximal loading of cadaver knees causes an increase in co-localised induction of collagen unravelling and tissue compliance, especially in regions of greater mineralisation at the ACL femoral enthesis. Upon 100 cycles of 4× bodyweight knee loading, the ACL exhibited greater unravelled collagen in highly mineralized regions across varying levels of stiffness domains as compared to unloaded controls. A decrease in the total area of the most rigid domain, and an increase in the total area of the most compliant domain was also found. The results highlight fatigue-driven changes in both protein structure and mechanics in the more mineralized regions of the ACL enthesis, a known site of clinical ACL failure. The results provide a starting point for designing studies to limit ligament overuse injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla , Fatiga , Colágeno
3.
ACS Nano ; 15(8): 13721-13731, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34375086

RESUMEN

The nanoscale hierarchical design that draws inspiration from nature's biomaterials allows the enhancement of material performance and enables multifarious applications. Self-assembly of block copolymers represents one of these artificial techniques that provide an elegant bottom-up strategy for the synthesis of soft colloidal hierarchies. Fast-growing polymerization-induced self-assembly (PISA) renders a one-step process for the polymer synthesis and in situ self-assembly at high concentrations. Nevertheless, it is exceedingly challenging for the fabrication of hierarchical colloids via aqueous PISA, simply because most monomers produce kinetically trapped spheres except for a few PISA-suitable monomers. We demonstrate here a sequential one-pot synthesis of hierarchically self-assembled polymer colloids with diverse morphologies via aqueous PISA that overcomes the limitation. Complex formation of water-immiscible monomers with cyclodextrin via "host-guest" inclusion, followed by sequential aqueous polymerization, provides a linear triblock terpolymer that can in situ self-assemble into hierarchical nanostructures. To access polymer colloids with different morphologies, three types of linear triblock terpolymers were synthesized through this methodology, which allows the preparation of AXn-type colloidal molecules (CMs), core-shell-corona micelles, and raspberry-like nanoparticles. Furthermore, the phase separations between polymer blocks in nanostructures were revealed by transmission electron microscopy and atomic force microscopy-infrared spectroscopy. The proposed mechanism explained how the interfacial tensions and glass transition temperatures of the core-forming blocks affect the morphologies. Overall, this study provides a scalable method of the production of CMs and other hierarchical structures. It can be applied to different block copolymer formulations to enrich the complexity of morphology and enable diverse functions of nano-objects.

4.
Polymer (Guildf) ; 222: 123643, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33758430

RESUMEN

The COVID-19 pandemic has highlighted the need for diversity in the market and alternative materials for personal protective equipment (PPE). Paper has high coatability for tunable barrier performance, and an agile production process, making it a potential substitute for polyolefin-derived PPE materials. Bleached and newsprint papers were laminated with polyethylene (PE) coatings of different thicknesses, and characterised for their potential use as medical gowns for healthcare workers and COVID-19 patients. Thicker PE lamination improved coating homogeneity and water vapour resistance. 49 GSM bleached paper with 16 GSM PE coating showed high tensile and seam strength, and low water vapour transmission rate (WVTR). Phi-X174 bacteriophage testing revealed that paper laminated with 15 GSM coating hinders virus penetration. This research demonstrates that PE laminated paper is a promising material for low cost viral protective gowns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...