Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Astrobiology ; 22(3): 233-241, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672795

RESUMEN

Uracil is one of the four RNA nucleobases and a component of meteoritic organics. If delivered to the early Earth, uracil could have been involved in the origins of the first RNA-based life, and so this molecule could be a biomarker on other worlds. Therefore, it is important to understand uracil's survival to ionizing radiation in extraterrestrial environments. Here we present a study of the radiolytic destruction kinetics of uracil and mixtures of uracil diluted in H2O or CO2 ice. All samples were irradiated by protons with an energy of 0.9 MeV, and experiments were performed at 20 and 150 K to determine destruction rate constants at temperatures relevant to interstellar and Solar System environments. We show that uracil is destroyed much faster when H2O ice or CO2 ice is present than when these two ices are absent. Moreover, destruction is faster for CO2-dominated ices than for H2O-dominated ones and, to a lesser extent, at 150 K compared with 20 K. Extrapolation of our laboratory results to astronomical timescales shows that uracil will be preserved in ices with half-lives of up to ∼107 years on cold planetary bodies such as comets or Pluto. An important implication of our results is that for extraterrestrial environments, the application of laboratory data measured for the radiation-induced destruction of pure (neat) uracil samples can greatly underestimate the molecule's rate of destruction and significantly overestimate its lifetime, which can lead to errors of over 1000%.


Asunto(s)
Uracilo , Agua , Animales , Medio Ambiente Extraterrestre , Sistema Solar , Espectrofotometría Infrarroja
2.
J Phys Chem Lett ; 12(44): 10854-10860, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727500

RESUMEN

We report new computational and experimental evidence of an efficient and astrochemically relevant formation route to formaldehyde (H2CO). This simplest carbonylic compound is central to the formation of complex organics in cold interstellar clouds and is generally regarded to be formed by the hydrogenation of solid-state carbon monoxide. We demonstrate H2CO formation via the reaction of carbon atoms with amorphous solid water. Crucial to our proposed mechanism is a concerted proton transfer catalyzed by the water hydrogen bonding network. Consequently, the reactions 3C + H2O → 3HCOH and 1HCOH → 1H2CO can take place with low or without barriers, contrary to the high-barrier traditional internal hydrogen migration. These low barriers (or the absence thereof) explain the very small kinetic isotope effect in our experiments when comparing the formation of H2CO to D2CO. Our results reconcile the disagreement found in the literature on the reaction route C + H2O → H2CO.

3.
Phys Chem Chem Phys ; 18(30): 20160-7, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27157087

RESUMEN

We present a study of the reactions of the meteoritic mineral schreibersite (Fe,Ni)3P, focusing primarily on surface chemistry and prebiotic phosphorylation. In this work, a synthetic analogue of the mineral was synthesized by mixing stoichiometric proportions of elemental iron, nickel and phosphorus and heating in a tube furnace at 820 °C for approximately 235 hours under argon or under vacuum, a modification of the method of Skála and Drábek (2002). Once synthesized, the schreibersite was characterized to confirm the identity of the product as well as to elucidate the oxidation processes affecting the surface. In addition to characterization of the solid product, this schreibersite was reacted with water or with organic solutes in a choline chloride-urea deep eutectic mixture, to constrain potential prebiotic products. Major inorganic solutes produced by reaction of water include orthophosphate, phosphite, pyrophosphate and hypophosphate consistent with prior work on Fe3P corrosion. Additionally, schreibersite corrodes in water and dries down to form a deep eutectic solution, generating phosphorylated products, in this case phosphocholine, using this synthesized schreibersite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...