Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(7): 1101-1112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499848

RESUMEN

Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.


Asunto(s)
Condensados Biomoleculares , Proteoma , Proteoma/metabolismo , Proteoma/química , Humanos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas , Células HeLa , Proteómica/métodos
2.
Cell Chem Biol ; 30(11): 1436-1452.e10, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37611590

RESUMEN

Wnt/ß-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of ß-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and ß-catenin and promotes the phase separation for ß-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing ß-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/ß-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against ß-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , beta Catenina/metabolismo , Enzimas Desubicuitinizantes/metabolismo
3.
Small ; 16(8): e1906797, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32003923

RESUMEN

The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)-based multiplex proteins activation tool to ablate deep-tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300-fold enhancement of blue (450-470 nm) and red (590-610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light-induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep-tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single- and multiple-cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.


Asunto(s)
Técnicas de Ablación , Locomoción , Nanopartículas , Neuronas , Técnicas de Ablación/métodos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/efectos de la radiación , Rayos Infrarrojos , Luz , Locomoción/efectos de los fármacos , Nanopartículas/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Optogenética , Oxígeno Singlete/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA