Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.536
Filtrar
1.
Fish Shellfish Immunol ; 153: 109830, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142374

RESUMEN

Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.

2.
Int Immunopharmacol ; 141: 112900, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137628

RESUMEN

The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.

3.
J Hazard Mater ; 478: 135435, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151354

RESUMEN

Selective and prior extraction of 99TcO4- ahead of uranium and plutonium separation is a beneficial strategy for the modern nuclear fuel cycle. Herein, a novel DGA-grafting pyridine ligand BisDODGA-DAPy (L1) was tailored for the efficient separation of TcO4- from simulated spent nuclear fuel based on the selectivity of pyridine and synergistic effect of diglycolamide (DGA) group. Compared to the ligands BisDOSCA-DAPy (L2) and BisDODGA-MPDA (L3) with similar structure, BisDODGA-DAPy (L1) demonstrated the better separation performance including good extraction efficiency, reusability, and high loading capacity for TcO4- under high acidic medium. The interactions of the ligands with Tc(VII)/Re(VII) have been investigated in detail using FT-IR, 1H NMR titration, UV-Vis spectrophotometric titration, ESI-HRMS and DFT simulations. The extraction mechanism affected by the protonation of ligand was elucidated under different acidity. BisDODGA-DAPy (L1) demonstrated the ultra-selective extraction ability for TcO4- from simulated spent nuclear fuel. The maximum SFTc/U and SFTc/Pu values were up to 1.29 × 104 and 5.08 × 103, respectively. In the presence of 9 × 104-fold excess of NO3-, the extraction of TcO4- was almost unaffected. Moreover, the good radiolytic stability further highlights the promising potential of this ligand for 99Tc separation. DFT calculation revealed the dominant role of DAPy and DODGA in TcO4- extraction, providing the theoretical evidence for BisDODGA-DAPy (L1) to selectively bind TcO4- over NO3-.

4.
Food Chem ; 460(Pt 3): 140745, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126945

RESUMEN

An antioxidant amyloid fibril was prepared as an emulsifier by fibrillating limited enzymatic hydrolysis-modified rice protein (HRP). The purpose of this study was to investigate the feasibility of using fibrillated HRP to stabilize oil-in-water emulsion. A free radical scavenging assay revealed that the antioxidant activity of fibrillated HRP was 2.09 times higher than that of native rice protein. Fibrillated HRP demonstrated a marked reduction in interfacial tension, increased surface hydrophobicity and contact angle (> 80°), and rapid adsorption to the interface, with 35.34 ± 2.43% interfacial adsorbed protein content. The fibrillated HRP barriers resisted environment stresses such as NaCl, pH variations, long-term storage, while reducing lipid oxidation degree. Additionally, fibrillated HRP-based emulsion was more effective in protecting ß-carotene from degradation compared to other samples. These findings provide theoretical support for the development of rice protein-based antioxidant emulsifiers and modification of emulsifying properties of plant proteins.

5.
J Hazard Mater ; 478: 135443, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39128156

RESUMEN

Microplastics (MPs) are widespread in agroecosystems and profoundly impact soil microbiome and nutrient cycling. However, the effects of MPs on soil autotrophic ammonium oxidization processes, including nitrification, complete ammonium oxidation (comammox), anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox), remain unclear. These processes are the rate-limiting steps of nitrogen cycling in agroecosystems. Here, our work unveiled that exposures of polyethylene (PE), polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) MPs significantly modulated ammonium oxidization pathways with distinct type- and dose-dependent effects. Nitrification remained the main contributor (56.4-70.7 %) to soil ammonium removal, followed by comammox (11.7-25.6 %), anammox (5.0-20.2 %) and Feammox (3.3-11.6 %). Compared with conventional nonbiodegradable MPs (i.e., PE and PP), biodegradable MPs (i.e., PLA and PBAT) exhibited more pronounced impacts on soil nutrient conditions and functional microbes, which collectively induced alterations in soil ammonium oxidation. Interestingly, low-dose PLA and PBAT remarkably enhanced the roles of anammox and Feammox in soil ammonium removal, contributing to the mitigation of soil acidification in agroecosystems. This study highlights the diverse responses of ammonium oxidization pathways to MPs, further deepening our understanding of how MPs affect biogeochemical cycling and enriching strategies for agricultural managements amid increasing MPs pollution.

6.
Int J Gen Med ; 17: 3649-3661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193261

RESUMEN

Objective: To explore serum KL-6 level and investigate its diagnostic value in interstitial lung diseases (ILDs). Methods: Serum KL-6 level was measured using the chemiluminescent enzyme immunoassay. Statistical analysis was performed for determining the KL-6 concentration of each group. Results: KL-6 level (U/mL) in the ILD group was 1388.321 ±1943.116, which was higher than that in the control group, showing a significant statistical difference. ROC curve analysis based on the receiver operating characteristic curve showed the optimal cut-off value of 402.5U/mL, sensitivity of 77.4%, specificity of 93.4%, and accuracy of 89.4%; through Chi-square test with the two groups, the positive rate of KL-6 in patients with ILD was proved to be significantly higher than that in the control group. KL-6 level was 1063.00±504.757 in the idiopathic pulmonary fibrosis (IPF) group, 1346.892 ±1827.252 in the connective tissue disease-associated interstitial lung disease (CTD-ILD) group, 467.889±288.859 in the organizing pneumonia (OP) group, 8252.333±6050.625 in the pulmonary alveolar proteinosis (PAP) group, and 359.200±392.707 in the sarcoidosis group. The rank sum test showed that the differences were statistically significant. KL-6 level was the lowest in the sarcoidosis group, followed by that in the OP group. Conclusion: Serum KL-6 level was confirmed to be highly sensitive, specific, and accurate in the diagnosis of ILD. Subgroup analysis showed that the KL-6 level was the lowest in the sarcoidosis group, followed by that in the OP group.

7.
Orthop Surg ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187981

RESUMEN

OBJECTIVE: Lower limb discrepancy (LLD) was frequently observed in patients with idiopathic scoliosis (IS), potentially associated with etiopathogenesis. Although sole lifts had been proposed as a conservative treatment for IS, evidence supporting their efficacy was limited. This study aimed to assess the effects of sole lift intervention on pediatric patients with mild IS, specifically focusing on thoracolumbar/lumbar (TL/L) curvature. METHODS: Twenty patients, with an average age of 12.3 ± 3.1 years and presenting mild TL/L curve (15.6° ± 6.2°), were selected from a pool of 267 pediatric IS patients in the outpatient of our spine center from February 2023 to August 2023. Inclusion criteria comprised a main TL/L curve ranging between 10° and 40°, the lower limb positioned at the convexity of the main curve, and LLD of less than 2 cm; individuals requiring bracing or surgical intervention were excluded. Custom sole lifts were used to address the shorter lower limb with the objective of leveling the pelvis. Radiographic evaluations were conducted both before and after intervention using standing full spine posteroanterior radiographs and full leg length radiographs. Statistical analysis was undertaken to evaluate curve correction and its associations with other influencing factors. RESULTS: The mean structural and functional LLD were 7.1 ± 4.5 mm and 7.1 ± 4.1 mm, respectively. Among the 20 patients, four exhibited structural LLD greater than 10 mm. The average follow-up duration was 6.4 ± 1.9 months (range: 3-8 months). Following sole lift intervention (7.0 ± 3.0 mm), a significant reduction was observed in the TL/L curve compared to the pre-sole lifting measurements (15.6° ± 6.2° vs. 12.1° ± 7.2°, p < 0.001), as well as a notable decrease in the thoracic curve (12.2° ± 4.0° vs. 8.6° ± 6.3°, p = 0.064). Nine patients experienced a significant curve reduction of ≥5°, while eight showed a reduction between 0° and 5°; however, two patients exhibited no change in curve magnitude. Furthermore, the correction rate of the TL/L curve correlated significantly with functional LLD (r = -0.484, p = 0.030) and pelvic obliquity (r = -0.556, p = 0.011), highlighting the active pelvic compensation in maintaining balance between the spine and lower limbs. Conversely, no significant correlation was observed between curve correction and structural LLD (p > 0.05). Additionally, even after adjusting for other influencing factors, the TL/L Cobb angle remained significantly different between pre- and post-sole lifting (p = 0.037). CONCLUSION: This study confirmed the effectiveness of sole lift intervention in correcting TL/L and thoracic curves among the mild IS children with a main TL/L curve, providing a supplementary conservative treatment option for patients with the lower limb at the convexity of the main curve. Moreover, our findings underscored the active compensation of the lower limbs and the pelvis in the etiopathogenesis of IS, highlighting the importance of considering their influence in treatment strategies.

8.
Discov Nano ; 19(1): 125, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115796

RESUMEN

Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.

9.
Water Res ; 265: 122285, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167975

RESUMEN

Microalgae-based biotechnology is one of the most promising alternatives to conventional methods for the removal of antibiotic contaminants from diverse water matrices. However, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in microalgal biodegradation of antibiotics is scant, which limits the development of enhancement strategies to increase their engineering feasibility. In this study, we investigated the removal dynamics of amphenicols (chloramphenicol, thiamphenicol, and florfenicol), which are widely used in aquaculture, by Chlamydomonas reinhardtii under different growth modes (autotrophy, heterotrophy, and mixotrophy). We found C. reinhardtii removed >92 % chloramphenicol (CLP) in mixotrophic conditions. Intriguingly, gamma-glutamyl hydrolase (GGH) in C. reinhardtii was most significantly upregulated according to the comparative proteomics, and we demonstrated that GGH can directly bind to CLP at the Pro77 site to induce acetylation of the hydroxyl group at C3 position, which generated CLP 3-acetate. This identified role of microalgal GGH is mechanistically distinct from that of animal counterparts. Our results provide a valuable enzyme toolbox for biocatalysis and reveal a new enzymatic function of microalgal GGH. As proof of concept, we also analyzed the occurrence of these three amphenicols and their degradation intermediate worldwide, which showed a frequent distribution of the investigated chemicals at a global scale. This study describes a novel catalytic enzyme to improve the engineering feasibility of microalgae-based biotechnologies. It also raises issues regarding the different microalgal enzymatic transformations of emerging contaminants because these enzymes might function differently from their counterparts in animals.

10.
Environ Int ; 190: 108863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959566

RESUMEN

Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Proto-Oncogenes Mas , Humanos , Material Particulado/toxicidad , Femenino , Masculino , Contaminantes Atmosféricos/toxicidad , Bases de Datos Factuales , Enfermedades Respiratorias/inducido químicamente , Enfermedades del Sistema Endocrino/inducido químicamente
11.
J Hazard Mater ; 477: 135337, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067299

RESUMEN

Transition metals are promising catalysts for environmental remediation. However, their low reactivity, poor stability and weak reusability largely limit practical applications. Herein, we report that the electron-rich dissolved black carbon (DBC) incorporated into the nanoscale zero-valent copper (nZVCu) can boost intrinsic reactivity, structural stability and cyclic reusability for superior peroxymonosulfate (PMS) activation and pollutant degradation. A series of refractory pollutants can be effectively removed on the DBC/nZVCu, in comparison with the nZVCu reference. Hydroxyl radical (‧OH) is identified as the dominant reactive oxygen species by electron spin resonance (ESR) and chemical quenching tests, mediated by the metastable Cu(III) as the key reactive intermediate. The electron-rich DBC protects nanoscale Cu from oxidative corrosion to slow down the surface formation of inert CuO layer, rendered by the thermodynamically and dynamically capacitive regulation of corrosive electron transfer from metallic core. By this refining way, the conducive DBC improves the neighboring utilization of reactive electron during metal corrosion, oxidant activation, radical generation and pollutant degradation in Fenton-like catalysis. Our findings suggest that the ubiquitous DBC can be an efficient chelating agent to refine transition metals by serving as the surface deactivator and electron mediator, and take new insights into their environmental and agricultural geochemistry.

13.
Int J Ophthalmol ; 17(7): 1363-1369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026924

RESUMEN

Retinitis pigmentosa (RP) is a group of genetic disorders characterized by progressive degeneration of photoreceptors and retinal pigment epithelium (RPE) cells. Its main clinical manifestations include night blindness and progressive loss of peripheral vision, making it a prevalent debilitating eye disease that significantly impacts patients' quality of life. RP exhibits significant phenotypic and genetic heterogeneity. For instance, numerous abnormal genes are implicated in RP, resulting in varying clinical presentations, disease progression rates, and pathological characteristics among different patients. Consequently, gene therapy for RP poses challenges due to these complexities. However, stem cells have garnered considerable attention in the field of RPE therapy since both RPE cells and photoreceptors can be derived from stem cells. In recent years, a large number of animal experiments and clinical trials based on stem cell transplantation attempts, especially cord blood mesenchymal stem cell (MSC) transplantation and bone marrow-derived MSC transplantation, have confirmed that stem cell therapy can effectively and safely improve the outer retinal function of the RP-affected eye. However, stem cell therapy also has certain limitations, such as the fact that RP patients may involve multiple types of retinal cytopathia, which brings great challenges to stem cell transplantation therapy, and further research is needed to solve various problems faced by this approach in the clinic. Through comprehensive analysis of the etiology and histopathological changes associated with RP, this study substantiates the efficacy and safety of stem cell therapy based on rigorous animal experimentation and clinical trials, while also highlighting the existing limitations that warrant further investigation.

14.
Acta Trop ; 257: 107283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955322

RESUMEN

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.


Asunto(s)
Transducción de Señal , Toxoplasma , Toxoplasmosis , Ubiquitina , Toxoplasma/metabolismo , Toxoplasma/fisiología , Toxoplasma/efectos de los fármacos , Ubiquitina/metabolismo , Humanos , Toxoplasmosis/parasitología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/metabolismo , Animales , Proteínas Protozoarias/metabolismo , Ubiquitinación , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo , Estadios del Ciclo de Vida
15.
Prev Med ; 185: 108063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997009

RESUMEN

OBJECTIVE: This study examines the causal relationships between serum micronutrients and site-specific osteoarthritis (OA) using Mendelian Randomization (MR). METHODS: This study performed a two-sample MR analysis to explore causal links between 21 micronutrients and 11 OA outcomes. These outcomes encompass overall OA, seven site-specific manifestations, and three joint replacement subtypes. Sensitivity analyses using MR methods, such as the weighted median, MR-Egger, and MR-PRESSO, assessed potential horizontal pleiotropy and heterogeneity. Genome-wide association summary statistical data were utilized for both exposure and outcome data, including up to 826,690 participants with 177,517 OA cases. All data was sourced from Genome-wide association studies datasets from 2009 to 2023. RESULTS: In the analysis of associations between 21 micronutrients and 11 OA outcomes, 15 showed Bonferroni-corrected significance (P < 0.000216), without significant heterogeneity or horizontal pleiotropy. Key findings include strong links between gamma-tocopherol and spine OA (OR = 1.70), and folate with hand OA in finger joints (OR = 1.15). For joint replacements, calcium showed a notable association with a reduced likelihood of total knee replacement (TKR) (OR = 0.52) and total joint replacement (TJR) (OR = 0.56). Serum iron was significantly associated with an increased risk of total hip replacement (THR) (OR = 1.23), while folate indicated a protective effect (OR = 0.95). Various sex-specific associations were also uncovered. CONCLUSION: These findings underscore the critical role of micronutrients in osteoarthritis, providing valuable insights for preventive care and potential enhancement of treatment outcomes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Micronutrientes , Osteoartritis , Humanos , Micronutrientes/sangre , Femenino , Masculino , Causalidad
16.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984883

RESUMEN

This paper proposes an active on-site calibration method through background current cancellation and non-rated current injection. It can measure the error of the current transformer in service from 1% to 120% rated current percentage without power supply interruption. In order to establish the error relationship between rated frequency and arbitrary frequency, a theoretical analysis of current transformer calibration at the arbitrary frequency has been developed by means of the equivalent circuit. It describes a method to determine the phase angle and ratio errors of the measuring transformers at arbitrary frequencies on the basis of the calibrated error values at rated frequency. To prove the theoretical analysis, an experimental validation was carried out. The experimental results demonstrate that this active onsite calibration is a valid tool for the evaluation of current transformer performances. The calibration results showed that, for both cases (non-rated frequency calibration and mixing frequency calibration), the difference between mean ratio error and rated frequency ratio error was lower than 0.01%, and the difference between mean phase error and rated frequency phase error was lower than 1', which meets the requirement of the 0.2 accuracy class calibration.

17.
Nature ; 631(8022): 826-834, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987597

RESUMEN

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Isquemia Encefálica , Ácido Glutámico , Animales , Femenino , Humanos , Masculino , Ratones , 2-Amino-5-fosfonovalerato/efectos adversos , 2-Amino-5-fosfonovalerato/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/deficiencia , Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitios de Unión/genética , Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ácido Glutámico/toxicidad , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Protones , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Chem Sci ; 15(27): 10477-10490, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38994406

RESUMEN

Ferroptosis has emerged as a form of programmed cell death and exhibits remarkable promise for anticancer therapy. However, it is challenging to discover ferroptosis inducers with new chemotypes and high ferroptosis-inducing potency. Herein, we report a new series of ferrocenyl-appended GPX4 inhibitors rationally designed in a "one stone kills two birds" strategy. Ferroptosis selectivity assays, GPX4 inhibitory activity and CETSA experiments validated the inhibition of novel compounds on GPX4. In particular, the ROS-related bioactivity assays highlighted the ROS-inducing ability of 17 at the molecular level and their ferroptosis enhancement at the cellular level. These data confirmed the dual role of ferrocene as both the bioisostere motif maintaining the inhibition capacity of certain molecules with GPX4 and also as the ROS producer to enhance the vulnerability to ferroptosis of cancer cells, thereby attenuating tumor growth in vivo. This proof-of-concept study of ferrocenyl-appended ferroptosis inducers via rational design may not only advance the development of ferroptosis-based anticancer treatment, but also illuminate the multiple roles of the ferrocenyl component, thus opening the way to novel bioorganometallics for potential disease therapies.

19.
SAGE Open Med ; 12: 20503121241257190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826826

RESUMEN

Objective: We explored the differences in deep venous catheterization-associated complications between patients with hematological malignancies after peripherally inserted central catheter placement and such patients after implantable venous access port catheterization. Introduction: peripherally inserted central catheters and implantable venous access ports are the most popular devices used for chemotherapy. However, no study has revealed differences between peripherally inserted central catheters and implantable venous access ports in Chinese patients with hematological malignancies. Methods: The clinical data of 322 patients with hematological malignancies who were treated from January 1, 2020 to December 30, 2021 were included in a retrospective cohort study. Postoperative color Doppler ultrasonography and follow-up results were used to compare the incidence rates of deep venous catheterization -associated complications after peripherally inserted central catheters and implantable venous access ports catheterization. Results: The relative risk of catheter-related complications considering the type of device was 8.3 (95% CI = 3.0-22.8). In addition, chi-square segmentation analysis revealed a significant difference in the complication rate between the internal jugular vein and the basilic vein (χ2 = 22.002, p < 0.0001) and between the subclavian vein and the basilic vein (χ2 = 28.940, p < 0.0001). Conclusion: Implantable venous access ports are safer than peripherally inserted central catheters for Chinese patients with hematological malignancies. The implantation of implantable venous access ports could be firstly considered for systematic anti-cancer treatment.

20.
Phytomedicine ; 132: 155831, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908193

RESUMEN

BACKGROUND: Based on the proposed lung-intestinal axis, there is a significant correlation between the microbiota and lung metastasis. Targeting the microbial composition is valuable in modulating the host response to cancer therapeutics. As a traditional Chinese medicine (TCM) formula, Shuangshen granules (SSG) are clinically useful in delaying lung metastasis, but its underlying mechanisms remain unknown. METHODS: The C57BL/6N mice were chosen to establish the Lewis lung cancer models. The broad-spectrum antibiotics (ABX) group was set up to estimate the effect of microbiota composition on metastasis. The therapeutic effects of different doses of SSG in treating lung metastasis were investigated through histopathology, immunohistochemistry, and Western blot analysis methods. Additionally, the phenotype of tumor-associated macrophages (TAMs) in the lung and blood was evaluated by flow cytometry. The fecal microbiota transplantation (FMT) and negative control (ABX plus high dose SSG group) experiments were also designed to assess intestinal microbiota's role in SSG intervention's outcome in lung metastasis. The 16S rRNA amplicon sequencing and Untargeted metabolomic analysis were used to analyze intestinal microbiota and metabolite changes mediated by SSG in tumor-bearing mice with lung metastasis. RESULT: ABX could observably lead to intestinal microbiota dysbiosis and enhance metastasis. SSG showed a significant chemopreventive effect in lung metastasis, reduced metastatic nodules and the expression levels of pre-metastatic niche biomarkers, and enriched the ratio of CD86+F4/80+CD11b+ cells, while FMT delayed metastasis similarly. The analysis of microbiota and metabolites revealed that SSG significantly enriched probiotics in feces, including Akkermansia muciniphila, Lachnoclostridium sp YL32, Limosilactobacillus reuteri, and potential anti-cancer serum metabolites, including Ginsenoside Rb1, Isoquinoline, Betulin and so on. We also investigated the mechanism of SSG protection against lung metastasis and showed that SSG regulated microbiota, improved TAMs polarization, and inhibited the expression of the NF-κB pathway. CONCLUSION: The results presented in our article demonstrated that SSG improved TAMs polarization and inhibited the NF-κB pathway by alleviating intestinal microbiota imbalance and metabolic disorders in tumor-bearing mice, resulting in delayed lung metastasis.


Asunto(s)
Carcinoma Pulmonar de Lewis , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Macrófagos Asociados a Tumores/efectos de los fármacos , Masculino , Trasplante de Microbiota Fecal , Pulmón/efectos de los fármacos , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...