Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioessays ; 46(7): e2400073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38760877

RESUMEN

Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.


Asunto(s)
Colesterol , NADP , Estrés Oxidativo , Ubiquitina-Proteína Ligasas , NADP/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Humanos , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Oxidación-Reducción , Esteroles/metabolismo , Esteroles/biosíntesis
3.
J Lipid Res ; 64(5): 100362, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958722

RESUMEN

Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and posttranslational levels. While some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the posttranslational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P)-dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7), is largely uncharacterized. Using cultured mammalian cell lines (human-derived and Chinese hamster ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, while sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial posttranslational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.


Asunto(s)
Fitosteroles , Esteroles , Cricetinae , Animales , Humanos , Esteroles/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células CHO , Cricetulus , Colesterol/metabolismo , Oxidorreductasas , 3-Hidroxiesteroide Deshidrogenasas
5.
J Biol Chem ; 295(9): 2850-2865, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31911440

RESUMEN

Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.


Asunto(s)
Colesterol/biosíntesis , Regulación de la Expresión Génica , Oxidorreductasas/genética , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/genética , Animales , Células CHO , Cricetulus , Humanos , Especificidad de Órganos , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Receptor de Lamina B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...