Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Br J Pharmacol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313956

RESUMEN

BACKGROUND AND PURPOSE: Psoriasis results from the interplay of innate and adaptive immunity in the skin. Oroxylin A (OA) has shown anti-inflammatory effects in various disorders. This study explores oroxylin A potential in treating psoriasis, particularly its impact on type I macrophage (Mφ1) polarization. EXPERIMENTAL APPROACH: Oroxylin A-mediated therapeutic effects were evaluated using imiquimod-induced or IL-23-injected psoriatic mice models, followed by proteomics assays to predict potential signalling and targeting proteins. Immunofluorescence and immunoblot assays verified that oroxylin A suppresses NF-kB signalling in M1 macrophages. Co-immunoprecipitation and microscale thermophoresis (MST) assays further demonstrated that p62 (sequestosome 1) is the target protein for oroxylin A in macrophages. Oroxylin A-p62-mediated suppression of psoriasis was validated in an imiquimod-induced p62 conditional knockout (cKO) mice model. KEY RESULTS: Oroxylin A demonstrated therapeutic efficacy in murine models induced by imiquimod or IL-23 by attenuating cutaneous inflammation and mitigating Mφ1 polarization via NF-κB signalling. Proteomics analysis suggested SQSTM1/p62 as a key target, confirmed to interact directly with oroxylin A. Oroxylin A disrupted the p62-PKCζ interaction by binding to PB1 domain of p62. Its anti-inflammatory effects were significantly reduced in macrophages from p62 cKO mice compared to the wild-type (WT) mice in psoriasis model, supporting oroxylin A role in suppressing Mφ1 polarization through its interaction with p62. CONCLUSION AND IMPLICATIONS: Our findings demonstrated oroxylin A suppressed psoriasiform skin inflammation in mouse models by blocking the PKCζ-p62 interaction, subsequently inhibiting the activation of NF-κB p65 phosphorylation in macrophages.

2.
Eur J Med Chem ; 279: 116830, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39303516

RESUMEN

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), a critical regulator of proliferation pathways and immune checkpoint signaling in various cancers, is an attractive target for cancer therapy. Here, we report the discovery of a novel series of substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Among them, compound C6 showed excellent inhibitory activity against SHP2 and antiproliferative effect on MV-4-11 cell line with IC50 values of 0.13 and 3.5 nM, respectively. Importantly, orally administered C6 displayed robust in vivo antitumor efficacy in the MV-4-11 xenograft mouse model (TGI = 69.5 %, 30 mg/kg). Subsequent H&E and Ki67 staining showed that C6 significantly suppressed the proliferation of tumor cells. Notably, flow cytometry, ELISA and immunofluorescence experiments showed that C6 remarkably decreased the population of CD206+/Ly6C+ M2-like tumor-associated macrophages (TAMs), the expression level of interleukin-10 (IL-10), and the number of F4/80+/CD206+ M2-like TAMs, suggesting that C6 could effectively alleviate the activation and infiltration of M2-like TAMs. Taken together, these results illustrate that C6 is a promising SHP2 inhibitor worthy of further development.

3.
ACS Appl Mater Interfaces ; 16(38): 50175-50187, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269914

RESUMEN

Diabetic wound healing including diabetic foot ulcers is a major clinical challenge, which could bring an increased level of mortality and morbidity. However, conventional wound dressings exhibit limited healing efficacy due to their lack of active modulation for the healing process. Here, a near-infrared (NIR) stimuli-responsive composite hydrogel dressing with the synergistic effect of both mechanical contraction and epithelial-mesenchymal transition (EMT) was developed to facilitate cell migration and vascularization for diabetic wound healing. In the methacrylated gelatin-based composite hydrogel, N-isopropylacrylamide and polydopamine nanoparticles were incorporated to endow the composite hydrogel with thermosensitive and photothermal properties. Linagliptin (LIN) was loaded into the composite hydrogel, and the drug release rate could be controlled by NIR laser irradiation. NIR-triggered on-demand active contraction of wound area and LIN release for biological stimulation were potentially realized in this responsive system due to the thermally induced sol-gel transition of the composite hydrogel. The release of loaded LIN could effectively promote cell migration by activating EMT and enhancing angiogenesis. In the full-thickness skin defect model, the LIN-loaded composite hydrogel with NIR laser irradiation had the highest wound closure rate as compared with the pure hydrogel and LIN-loaded hydrogel groups. Therefore, this composite hydrogel can serve as an excellent platform for promoting wound healing and will find more practical value in clinical treatment.


Asunto(s)
Movimiento Celular , Hidrogeles , Rayos Infrarrojos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de la radiación , Humanos , Polímeros/química , Polímeros/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Nanopartículas/química , Indoles/química , Indoles/farmacología
4.
Infect Drug Resist ; 17: 865-873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468846

RESUMEN

Histoplasmosis is an endemic disease caused by Histoplasma capsulatum. This systemic disease can affect various organs beyond the lungs, such as the liver, spleen, adrenal gland, and lymph nodes. The clinical symptoms can range from asymptomatic to severe, life-threatening conditions, depending on the state of the patient's immune system. This report describes a 40-year-old male who presented with reports of weight loss, low back pain, and progressively worsening movement disorder of the bilateral lower extremities for months. Computed tomography (CT) examination showed multiple lytic lesions of vertebral bodies, bilateral ribs, and pelvic bone, histopathological examination and tumor-related serum markers exclude tumors. mNGS was employed to identify H. capsulatum var. capsulatum as the etiological agent of the lesions in the bone biopsy. Through phylogenetic tree analysis, Histoplasma capsulatum var. Capsulatum (Hcc) was the main responsible pathogen, rarely reported in bone lesions. The patient underwent spinal surgery and was successfully treated with liposomal amphotericin B and itraconazole. Based on the diagnosis and treatment of this case, we discuss the epidemiologic status, clinical presentations, diagnostic criteria, and treatment guidelines of histoplasmosis to provide additional information about this disease. mNGS is utilized in this case, and it appears to be a reliable method for early and accurate diagnosis of this disease.

6.
ACS Biomater Sci Eng ; 10(1): 255-270, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38118130

RESUMEN

The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Huesos/diagnóstico por imagen , Huesos/cirugía , Impresión Tridimensional
7.
Bioact Mater ; 31: 18-37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37593495

RESUMEN

The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.

8.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961427

RESUMEN

The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.

9.
Biomed Pharmacother ; 169: 115899, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37984306

RESUMEN

As a traditional Chinese medicine, Huangkui capsule (HKC) has been used to treat patients with kidney diseases, including diabetic nephropathy (DN). We have recently demonstrated that HKC could re-regulate the activities of solute carriers (SLC)s in proximal and distal convoluted tubules of kidneys in regression of the development of DN. The main active chemical constituents of HKC are the flavones of Abelmoschus manihot (L.). The current study aims to further evaluate the efficacy of total flavones of A. manihot (TFA) in the regression of DN by analyzing SLC activities in proximal and distal convoluted tubules of kidneys. TFA (0.076 g/kg/d) or vehicle was administered in db/db mice, the animal model of type 2 diabetes and DN, daily via oral gavage for four weeks. Blood glucose levels and urinary albumin-to-creatinine ratio (UACR) were measured and used for the determination of T2D and DN. Ten SLCs, including slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 were highly expressed in proximal and distinct convoluted tubules of kidneys. Their expression at mRNA and protein levels before and after TFA treatment were analyzed with real-time RT-PCR and immunohistochemistry. Data showed that UACR in the db/db mice after TFA treatment was significantly decreased. Compared with the group of non-diabetic control, slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 in the group of DN were down-regulated but up-regulated after TFA treatment. Further analyses of whole kidney sections indicated that the numbers and structures of the nephron in db/db mice was increased and improved after TFA treatment. Thereby, the current study provides further evidence that the flavones in A. manihot have pharmacological effects on the treatment of DN by improving the biological function of SLCs in kidneys.


Asunto(s)
Abelmoschus , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Flavonas , Humanos , Ratas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Abelmoschus/química , Flavonas/farmacología , Flavonas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Sprague-Dawley , Células Epiteliales
10.
Cell Rep ; 42(11): 113430, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963021

RESUMEN

Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.


Asunto(s)
Dermatitis Atópica , Animales , Ratones , Autofagia , Dermatitis Atópica/metabolismo , Modelos Animales de Enfermedad , Activación de Macrófagos , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA