Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Coll Cardiol ; 77(4): 405-419, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509397

RESUMEN

BACKGROUND: Whereas heart failure with reduced ejection fraction (HFrEF) is associated with ventricular dilation and markedly reduced systolic function, heart failure with preserved ejection fraction (HFpEF) patients exhibit concentric hypertrophy and diastolic dysfunction. Impaired cardiomyocyte Ca2+ homeostasis in HFrEF has been linked to disruption of membrane invaginations called t-tubules, but it is unknown if such changes occur in HFpEF. OBJECTIVES: This study examined whether distinct cardiomyocyte phenotypes underlie the heart failure entities of HFrEF and HFpEF. METHODS: T-tubule structure was investigated in left ventricular biopsies obtained from HFrEF and HFpEF patients, whereas cardiomyocyte Ca2+ homeostasis was studied in rat models of these conditions. RESULTS: HFpEF patients exhibited increased t-tubule density in comparison with control subjects. Super-resolution imaging revealed that higher t-tubule density resulted from both tubule dilation and proliferation. In contrast, t-tubule density was reduced in patients with HFrEF. Augmented collagen deposition within t-tubules was observed in HFrEF but not HFpEF hearts. A causative link between mechanical stress and t-tubule disruption was supported by markedly elevated ventricular wall stress in HFrEF patients. In HFrEF rats, t-tubule loss was linked to impaired systolic Ca2+ homeostasis, although diastolic Ca2+ removal was also reduced. In contrast, Ca2+ transient magnitude and release kinetics were largely maintained in HFpEF rats. However, diastolic Ca2+ impairments, including reduced sarco/endoplasmic reticulum Ca2+-ATPase activity, were specifically observed in diabetic HFpEF but not in ischemic or hypertensive models. CONCLUSIONS: Although t-tubule disruption and impaired cardiomyocyte Ca2+ release are hallmarks of HFrEF, such changes are not prominent in HFpEF. Impaired diastolic Ca2+ homeostasis occurs in both conditions, but in HFpEF, this mechanism for diastolic dysfunction is etiology-dependent.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca Diastólica/etiología , Miocitos Cardíacos/metabolismo , Anciano , Anciano de 80 o más Años , Ecocardiografía , Femenino , Insuficiencia Cardíaca Diastólica/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/metabolismo , Insuficiencia Cardíaca Diastólica/patología , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/patología
2.
Cardiovasc Res ; 115(4): 752-764, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30351410

RESUMEN

AIMS: Regional heterogeneities in contraction contribute to heart failure with reduced ejection fraction (HFrEF). We aimed to determine whether regional changes in myocardial relaxation similarly contribute to diastolic dysfunction in post-infarction HFrEF, and to elucidate the underlying mechanisms. METHODS AND RESULTS: Using the magnetic resonance imaging phase-contrast technique, we examined local diastolic function in a rat model of post-infarction HFrEF. In comparison with sham-operated animals, post-infarction HFrEF rats exhibited reduced diastolic strain rate adjacent to the scar, but not in remote regions of the myocardium. Removal of Ca2+ within cardiomyocytes governs relaxation, and we indeed found that Ca2+ transients declined more slowly in cells isolated from the adjacent region. Resting Ca2+ levels in adjacent zone myocytes were also markedly elevated at high pacing rates. Impaired Ca2+ removal was attributed to a reduced rate of Ca2+ sequestration into the sarcoplasmic reticulum (SR), due to decreased local expression of the SR Ca2+ ATPase (SERCA). Wall stress was elevated in the adjacent region. Using ex vivo experiments with loaded papillary muscles, we demonstrated that high mechanical stress is directly linked to SERCA down-regulation and slowing of relaxation. Finally, we confirmed that regional diastolic dysfunction is also present in human HFrEF patients. Using echocardiographic speckle-tracking of patients enrolled in the LEAF trial, we found that in comparison with controls, post-infarction HFrEF subjects exhibited reduced diastolic train rate adjacent to the scar, but not in remote regions of the myocardium. CONCLUSION: Our data indicate that relaxation varies across the heart in post-infarction HFrEF. Regional diastolic dysfunction in this condition is linked to elevated wall stress adjacent to the infarction, resulting in down-regulation of SERCA, disrupted diastolic Ca2+ handling, and local slowing of relaxation.


Asunto(s)
Señalización del Calcio , Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Remodelación Ventricular , Anciano , Animales , Simulación por Computador , Diástole , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Cinética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Ensayos Clínicos Controlados Aleatorios como Asunto , Ratas Wistar , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
3.
Cardiovasc Res ; 113(10): 1161-1172, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472418

RESUMEN

AIMS: Concentric hypertrophy following pressure-overload is linked to preserved systolic function but impaired diastolic function, and is an important substrate for heart failure with preserved ejection fraction. While increased passive stiffness of the myocardium is a suggested mechanism underlying diastolic dysfunction in these hearts, the contribution of active diastolic Ca2+ cycling in cardiomyocytes remains unclear. In this study, we sought to dissect contributions of passive and active mechanisms to diastolic dysfunction in the concentrically hypertrophied heart following pressure-overload. METHODS AND RESULTS: Rats were subjected to aortic banding (AB), and experiments were performed 6 weeks after surgery using sham-operated rats as controls. In vivo ejection fraction and fractional shortening were normal, confirming preservation of systolic function. Left ventricular concentric hypertrophy and diastolic dysfunction following AB were indicated by thickening of the ventricular wall, reduced peak early diastolic tissue velocity, and higher E/e' values. Slowed relaxation was also observed in left ventricular muscle strips isolated from AB hearts, during both isometric and isotonic stimulation, and accompanied by increases in passive tension, viscosity, and extracellular collagen. An altered titin phosphorylation profile was observed with hypophosphorylation of the phosphosites S4080 and S3991 sites within the N2Bus, and S12884 within the PEVK region. Increased titin-based stiffness was confirmed by salt-extraction experiments. In contrast, isolated, unloaded cardiomyocytes exhibited accelerated relaxation in AB compared to sham, and less contracture at high pacing frequencies. Parallel enhancement of diastolic Ca2+ handling was observed, with augmented NCX and SERCA2 activity and lowered resting cytosolic [Ca2+]. CONCLUSION: In the hypertrophied heart with preserved systolic function, in vivo diastolic dysfunction develops as cardiac fibrosis and alterations in titin phosphorylation compromise left ventricular compliance, and despite compensatory changes in cardiomyocyte Ca2+ homeostasis.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Adaptación Fisiológica , Animales , Aorta/fisiopatología , Aorta/cirugía , Presión Arterial , Colágeno/metabolismo , Adaptabilidad , Conectina/metabolismo , Constricción , Diástole , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Preparación de Corazón Aislado , Masculino , Miocardio/patología , Fosforilación , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sístole , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
4.
Cardiovasc Res ; 112(1): 443-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27226008

RESUMEN

AIMS: Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. METHODS AND RESULTS: MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. CONCLUSION: Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Función Ventricular Izquierda , Animales , Fenómenos Biomecánicos , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/parasitología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Homeostasis , Masculino , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Ratas Wistar , Estrés Mecánico , Factores de Tiempo , Remodelación Ventricular
5.
Curr Pharm Des ; 21(4): 431-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25483944

RESUMEN

Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease mechanisms. Disrupted cardiomyocyte Ca(2+) homeostasis is recognized as a major contributor to the heart failure phenotype, as it plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline existing knowledge of the involvement of Ca(2+) homeostasis in these deficits, and identify four promising targets for therapeutic intervention: the sarcoplasmic reticulum Ca(2+) ATPase, the Na(+)-Ca(2+) exchanger, the ryanodine receptor, and t-tubule structure. We discuss experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic approaches.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Homeostasis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos Cardíacos/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 307(10): H1487-96, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25239804

RESUMEN

In Takotsubo cardiomyopathy, the left ventricle shows apical ballooning combined with basal hypercontractility. Both clinical observations in humans and recent experimental work on isolated rat ventricular myocytes suggest the dominant mechanisms of this syndrome are related to acute catecholamine overload. However, relating observed differences in single cells to the capacity of such alterations to result in the extreme changes in ventricular shape seen in Takotsubo syndrome is difficult. By using a computational model of the rat left ventricle, we investigate which mechanisms can give rise to the typical shape of the ventricle observed in this syndrome. Three potential dominant mechanisms related to effects of ß-adrenergic stimulation were considered: apical-basal variation of calcium transients due to differences in L-type and sarco(endo)plasmic reticulum Ca(2+)-ATPase activation, apical-basal variation of calcium sensitivity due to differences in troponin I phosphorylation, and apical-basal variation in maximal active tension due to, e.g., the negative inotropic effects of p38 MAPK. Furthermore, we investigated the interaction of these spatial variations in the presence of a failing Frank-Starling mechanism. We conclude that a large portion of the apex needs to be affected by severe changes in calcium regulation or contractile function to result in apical ballooning, and smooth linear variation from apex to base is unlikely to result in the typical ventricular shape observed in this syndrome. A failing Frank-Starling mechanism significantly increases apical ballooning at end systole and may be an important additional factor underpinning Takotsubo syndrome.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Simulación por Computador , Ventrículos Cardíacos/efectos de los fármacos , Isoproterenol/farmacología , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Receptores Adrenérgicos beta/efectos de los fármacos , Cardiomiopatía de Takotsubo/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Modelos Lineales , Imagen por Resonancia Cinemagnética , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Receptores Adrenérgicos beta/metabolismo , Volumen Sistólico/efectos de los fármacos , Cardiomiopatía de Takotsubo/metabolismo , Presión Ventricular/efectos de los fármacos
7.
Biophys J ; 104(8): 1685-97, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23601316

RESUMEN

Recent work has demonstrated that cardiomyocyte Ca(2+)release is desynchronized in several pathological conditions. Loss of Ca(2+) release synchrony has been attributed to t-tubule disruption, but it is unknown if other factors also contribute. We investigated this issue in normal and failing myocytes by integrating experimental data with a mathematical model describing spatiotemporal dynamics of Ca(2+) in the cytosol and sarcoplasmic reticulum (SR). Heart failure development in postinfarction mice was associated with progressive t-tubule disorganization, as quantified by fast-Fourier transforms. Data from fast-Fourier transforms were then incorporated in the model as a dyadic organization index, reflecting the proportion of ryanodine receptors located in dyads. With decreasing dyadic-organization index, the model predicted greater dyssynchrony of Ca(2+) release, which exceeded that observed in experimental line-scan images. Model and experiment were reconciled by reducing the threshold for Ca(2+) release in the model, suggesting that increased RyR sensitivity partially offsets the desynchronizing effects of t-tubule disruption in heart failure. Reducing the magnitude of SR Ca(2+) content and release, whether experimentally by thapsigargin treatment, or in the model, desynchronized the Ca(2+) transient. However, in cardiomyocytes isolated from SERCA2 knockout mice, RyR sensitization offset such effects. A similar interplay between RyR sensitivity and SR content was observed during treatment of myocytes with low-dose caffeine. Initial synchronization of Ca(2+) release during caffeine was reversed as SR content declined due to enhanced RyR leak. Thus, synchrony of cardiomyocyte Ca(2+) release is not only determined by t-tubule organization but also by the interplay between RyR sensitivity and SR Ca(2+) content.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/ultraestructura , Retículo Sarcoplasmático/metabolismo , Animales , Cafeína/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Citosol/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/ultraestructura , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Sarcolema/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA