Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phys Med Biol ; 56(14): 4355-76, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21709343

RESUMEN

A new concept for the design of flattening filters applied in the generation of 6 and 15 MV photon beams by clinical linear accelerators is evaluated by Monte Carlo simulation. The beam head of the Siemens Primus accelerator has been taken as the starting point for the study of the conceived beam head modifications. The direction-selective filter (DSF) system developed in this work is midway between the classical flattening filter (FF) by which homogeneous transversal dose profiles have been established, and the flattening filter-free (FFF) design, by which advantages such as increased dose rate and reduced production of leakage photons and photoneutrons per Gy in the irradiated region have been achieved, whereas dose profile flatness was abandoned. The DSF concept is based on the selective attenuation of bremsstrahlung photons depending on their direction of emission from the bremsstrahlung target, accomplished by means of newly designed small conical filters arranged close to the target. This results in the capture of large-angle scattered Compton photons from the filter in the primary collimator. Beam flatness has been obtained up to any field cross section which does not exceed a circle of 15 cm diameter at 100 cm focal distance, such as 10 × 10 cm(2), 4 × 14.5 cm(2) or less. This flatness offers simplicity of dosimetric verifications, online controls and plausibility estimates of the dose to the target volume. The concept can be utilized when the application of small- and medium-sized homogeneous fields is sufficient, e.g. in the treatment of prostate, brain, salivary gland, larynx and pharynx as well as pediatric tumors and for cranial or extracranial stereotactic treatments. Significant dose rate enhancement has been achieved compared with the FF system, with enhancement factors 1.67 (DSF) and 2.08 (FFF) for 6 MV, and 2.54 (DSF) and 3.96 (FFF) for 15 MV. Shortening the delivery time per fraction matters with regard to workflow in a radiotherapy department, patient comfort, reduction of errors due to patient movement and a slight, probably just noticable improvement of the treatment outcome due to radiobiological reasons. In comparison with the FF system, the number of head leakage photons per Gy in the irradiated region has been reduced at 15 MV by factors 1/2.54 (DSF) and 1/3.96 (FFF), and the source strength of photoneutrons was reduced by factors 1/2.81 (DSF) and 1/3.49 (FFF).


Asunto(s)
Método de Montecarlo , Fotones/uso terapéutico , Radioterapia Asistida por Computador/métodos , Humanos , Neutrones , Dosificación Radioterapéutica
2.
Z Med Phys ; 21(3): 183-97, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21530198

RESUMEN

The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of detector responses and dose conversion factors, as well as increases of the RBE have to be anticipated. Parameter P(D)(200 keV) can also be used as a guidance supporting the selection of a calibration geometry suitable for radiation dosimeters to be used in small radiation fields.


Asunto(s)
Modelos Teóricos , Aceleradores de Partículas , Fotones , Simulación por Computador , Humanos , Método de Montecarlo , Radiometría , Radioterapia , Reproducibilidad de los Resultados
3.
Phys Med Biol ; 55(14): 4011-27, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20577041

RESUMEN

The component analysis of the peripheral doses produced at typical accelerators such as the Siemens Primus 6/15 is regarded as an approach enabling technical strategies towards the reduction of second malignancies associated with photon beam radiotherapy. Suitable phantom and detector arrangements have been applied to show that the unavoidable peripheral dose contribution due to photon scattering from the directly irradiated part of the body or phantom does not constitute the entirety of the peripheral doses. Rather, there are peripheral dose contributions due to beam head leakage and to extrafocal radiation which can be regarded as partly avoidable. Simple methods of reducing beam head leakage from the Siemens Primus 6/15 linac are, for the crossplane direction, to install a pair of adjustable shielding blocks in the accessory holder and, for the inplane direction, to close all out-of-field leaf pairs of the multileaf collimator via the treatment planning system software. The relative efficiency of these shielding measures is largest in the case of small unavoidable dose contributions, i.e. for small fields and small depths. Methods of avoiding doses coming from extrafocal radiation are also envisaged for future research.


Asunto(s)
Fotones/uso terapéutico , Dosificación Radioterapéutica , Radioterapia/instrumentación , Radioterapia/métodos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Dispersión de Radiación , Programas Informáticos
4.
Radiother Oncol ; 95(2): 158-65, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20138379

RESUMEN

BACKGROUND AND PURPOSE: Clinical evaluation of a novel dosimetric accessory serving the permanent supervision of MLC function. MATERIALS AND METHODS: The DAVID system (PTW-Freiburg, Germany) is a transparent, multi-wire transmission ionization chamber, placed in the accessory holder of the treatment head. Since each of the 37 individual wires is positioned exactly below the associated leaf pair of the MLC, its signal records the opening of this leaf pair during patient treatment. RESULTS: The DAVID system closes a gap in the quality assurance program, permitting the permanent in-vivo verification of IMRT plans. During dosimetric plan verification with the 2D-ARRAY (PTW-Freiburg, Germany), reference values of the 37 DAVID signals are collected, with which the DAVID readings recorded during daily patient treatment are compared. This comparison is visually displayed in the control room, and warning and alarm levels of any discrepancies can be defined. The properties of the DAVID system as a transmission device, its sensitivity to beam delivery and leaflet errors as well as its stability have been analyzed for clinically relevant examples. In a recent version, the DAVID system has been equipped with 80 wires. CONCLUSIONS: The DAVID system permits the on-line detection of clinically relevant MLC discrepancies in IMRT deliveries.


Asunto(s)
Garantía de la Calidad de Atención de Salud , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Dosis de Radiación
5.
Z Med Phys ; 19(4): 252-63, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19962083

RESUMEN

In photon-beam radiotherapy, the absorbed dose in an irradiated object contains a contribution by energy-degraded photons originating from Compton scatter processes at parts of the treatment head and within the absorber itself. These low-energy spectral components may lead to changes in the response of non-ideally water-equivalent radiation detectors, such as Si diodes and radiographic films, in the water/tissue dose conversion factors and in the relative biological effectiveness (RBE). As a simple means of accounting for these changes in spectral quality, the Monte Carlo calculated fraction of the kerma or absorbed dose contributed by scattered photons with energies not exceeding a certain cut-off value has previously been proposed as a useful parameter. In this paper, we present an equivalent experimental approach, providing a means for the spatial mapping of radiation quality. Its applicability will be demonstrated for the case of (60)Co and 6 MV photons. A twin-chamber combination of a Farmer type ionization chamber, equipped with a graphited PMMA outer electrode, and a chamber of the same design, but with an outer electrode made from copper, has been developed. The measured quantity is the signal ratio (SR) of the copper wall and graphited wall chambers. A correlation between the SR and the fraction of the air kerma respectively of the absorbed dose to water, contributed by photons with energies not exceeding 200 keV, has been established at a Theratron 780-C (60)Co teletherapy unit and at a Siemens Primus 6 MV linear accelerator. We also describe a two-dimensional version of the twin-chamber method using the PTW 2D-Array 256. Typical trends of parameter SR with depth and off-axis distance in water-equivalent phantoms have been observed. Thereby, a simple experimental method for the space-resolved assessment of the dose fraction attributable to low-energy Compton scattered photons can be presented as an innovative instrument of describing radiation quality in radiotherapy.


Asunto(s)
Fotones/uso terapéutico , Radioterapia/normas , Aire , Simulación por Computador , Diseño de Equipo , Humanos , Modelos Estadísticos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Primarias Secundarias/etiología , Fantasmas de Imagen , Dosis de Radiación , Dosificación Radioterapéutica , Dispersión de Radiación , Estroncio
6.
Phys Med Biol ; 54(9): 2807-27, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19369712

RESUMEN

The two-dimensional lateral dose profiles D(x, y) of narrow photon beams, typically used for beamlet-based IMRT, stereotactic radiosurgery and tomotherapy, can be regarded as resulting from the convolution of a two-dimensional rectangular function R(x, y), which represents the photon fluence profile within the field borders, with a rotation-symmetric convolution kernel K(r). This kernel accounts not only for the lateral transport of secondary electrons and small-angle scattered photons in the absorber, but also for the 'geometrical spread' of each pencil beam due to the phase-space distribution of the photon source. The present investigation of the convolution kernel was based on an experimental study of the associated line-spread function K(x). Systematic cross-plane scans of rectangular and quadratic fields of variable side lengths were made by utilizing the linear current versus dose rate relationship and small energy dependence of the unshielded Si diode PTW 60012 as well as its narrow spatial resolution function. By application of the Fourier convolution theorem, it was observed that the values of the Fourier transform of K(x) could be closely fitted by an exponential function exp(-2pilambdanu(x)) of the spatial frequency nu(x). Thereby, the line-spread function K(x) was identified as the Lorentz function K(x) = (lambda/pi)[1/(x(2) + lambda(2))], a single-parameter, bell-shaped but non-Gaussian function with a narrow core, wide curve tail, full half-width 2lambda and convenient convolution properties. The variation of the 'kernel width parameter' lambda with the photon energy, field size and thickness of a water-equivalent absorber was systematically studied. The convolution of a rectangular fluence profile with K(x) in the local space results in a simple equation accurately reproducing the measured lateral dose profiles. The underlying 2D convolution kernel (point-spread function) was identified as K(r) = (lambda/2pi)[1/(r(2) + lambda(2))](3/2), fitting experimental results as well. These results are discussed in terms of their use for narrow-beam treatment planning.


Asunto(s)
Análisis de Fourier , Fotones , Modelos Biológicos , Fantasmas de Imagen , Dosis de Radiación , Agua
7.
Z Med Phys ; 18(4): 301-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19205300

RESUMEN

The unshielded Si diode PTW 60012, used for accurate measurements of the transversal dose profiles of narrow photon beams, has been investigated with regard to its linearity, photon energy dependence and spatial resolution. The diode shows a slight supralinearity, i.e., increase of the response with pulse dose, by 3% over the pulse dose range 0.1 to 0.8 mGy. In p-type silicon, supralinearity results from the increased chance for radiation-induced electrons to escape recombination when the pulse dose increases. Over the energy range from 6 to 15 MV, the response decreases by about 4%. This small variation of the response results from partial compensation between the influences of the secondary electron energy on the mass stopping power ratio silicon/water and on electron backscattering from the silicon chip. The lateral response function of the examined diode has a full half width of 1.3 mm. Dose profiles of 5 mm half-width can still be recorded with negligible error.


Asunto(s)
Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Adsorción , Humanos , Láseres de Semiconductores , Dosificación Radioterapéutica , Silicio
8.
Phys Med Biol ; 52(10): 2921-35, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17473360

RESUMEN

The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry and pattern analysis. The 2D-ARRAY Type 10024 (PTW-Freiburg, Germany), single-chamber cross section 5 x 5 mm(2), centre-to-centre distance between chambers in each row and column 10 mm, served as an example. Additional frames of given dose distributions can be taken by shifting the whole array parallel or perpendicular to the MLC leaves by, e.g., 5 mm. The size of the single detector is characterized by its lateral response function, a trapezoid with 5 mm top width and 9 mm base width. Therefore, values measured with the 2D array are regarded as sample values from the convolution product of the accelerator generated dose distribution and this lateral response function. Consequently, the dose verification, e.g., by means of the gamma index, is performed by comparing the measured values of the 2D array with the values of the convolution product of the treatment planning system (TPS) calculated dose distribution and the single-detector lateral response function. Sufficiently small misalignments of the measured dose distributions in comparison with the calculated ones can be detected since the lateral response function is symmetric with respect to the centre of the chamber, and the change of dose gradients due to the convolution is sufficiently small. The sampling step width of the 2D array should provide a set of sample values representative of the sampled distribution, which is achieved if the highest spatial frequency contained in this function does not exceed the 'Nyquist frequency', one half of the sampling frequency. Since the convolution products of IMRT-typical dose distributions and the single-detector lateral response function have no or very small frequency contributions beyond 0.1 mm(-1), the mathematical approach introduced by Nyquist and Shannon shows that the sampling frequency of 0.2 mm(-1) is appropriate. Overall it is shown that the spatial resolution of the 2D-ARRAY Type 10024 is appropriate for the dose verification of IMRT plans. The insights obtained are also applied in the discussion of other available two-dimensional detector arrays.


Asunto(s)
Aceleradores de Partículas , Radioterapia de Intensidad Modulada/métodos , Diseño de Equipo , Dosificación Radioterapéutica , Radioterapia de Alta Energía/instrumentación , Radioterapia de Alta Energía/métodos , Radioterapia de Intensidad Modulada/instrumentación , Transductores
9.
Strahlenther Onkol ; 183(1): 43-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17225945

RESUMEN

PURPOSE: To investigate the attenuation of a carbon-fiber tabletop and a combiboard, alongside with the depth-dose profile in a solid-water phantom. MATERIAL AND METHODS: Depth-dose measurements were performed with a Roos chamber for 6- and 10-MV beams for a typical field size (15 cm x 15 cm, SSD [source-surface distance] 100 cm). A rigid-stem ionization chamber was used to measure transmission factors. RESULTS: Transmission factors varied between 93.6% and 97.3% for the 6-MV beam, and 95.1% and 97.7% for the 10-MV photon beam. The lowest transmission factors were observed for the oblique gantry angle of 150 degrees with the table-combiboard combination. The surface dose normalized to a depth of 5 cm increased from 59.4% (without table, 0 degrees gantry), to 108.6% (tabletop present, 180 degrees gantry), and further to 120% (table-combiboard combination) for 6-MV photon beam. For 10 MV, the increase was from 39.6% (without table), to 88.9% (with table), and to 105.6% (table-combiboard combination). For the 150 degrees angle (tablecombiboard combination), the dose increased from 59.4% to 120% (6 MV) and from 39% to 108.1% (10 MV). CONCLUSION: Transmission factors for tabletops and accessories directly interfering with the treatment beam should be measured and implemented into the treatment-planning process. The increased surface dose to the skin should be considered.


Asunto(s)
Lechos , Carbono , Fotones/uso terapéutico , Radiometría/métodos , Radioterapia de Alta Energía/instrumentación , Fibra de Carbono , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Radioterapia de Alta Energía/métodos , Dispersión de Radiación
10.
Z Med Phys ; 16(3): 217-27, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16986461

RESUMEN

In the dosimetry of narrow photon fields with side lengths of the order of 1 cm, the traditional parametrisation via the absolute dose on the beam axis and the relative lateral dose distribution has to deal with the difficulty to find sufficiently small detectors and to adjust them accurately on the narrow-beam axis. This can be avoided by reconsidering the parametrisation, using as normalization factor the surface integral of the dose in the plane perpendicular to the beam axis, abbreviated as the "dose-area product" (DAP). We investigated and confirmed the ability of a large-area parallel-plate ionisation chamber, with a sensitive volume shaped as a flat cylinder of 81.6 mm diameter and 2 mm thickness, to perform the integration over the full lateral dose profile of narrow photon beams with side lengths up to 5 cm. The lateral adjustment of this large-area detector relative to a narrow photon beam is not critical. The large-area ionisation chamber was calibrated in terms of the DAP by reference to a 0.3 cm3 ionisation chamber. A field-size dependent "modified output factor" was defined as the ratio of the DAP measured at 5 cm phantom depth for 100 cm SSD, and the monitor reading. A prominent phenomenon of narrow photon fields is the field-size and source-distance independence of the relative axial profile of the DAP as function of the thickness of a pre-absorber or of the depth in a phantom. For narrow-beam treatment planning in IMRT, the DAP is combined with the energy- and field size-dependent relative lateral dose distribution which is represented, for example, by a Gaussian convolution kernel. Another useful feature of the DAP is the possibility of its direct control during patient irradiation by means of an on-line monitor with spatial resolution, arranged in the accessory holder.


Asunto(s)
Fotones , Radioterapia Asistida por Computador/métodos , Calibración , Relación Dosis-Respuesta en la Radiación , Humanos , Radioterapia Asistida por Computador/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...