Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693345

RESUMEN

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Asunto(s)
Embryophyta , Evolución Molecular , Filogenia , Transducción de Señal , Transducción de Señal/genética , Embryophyta/genética , Redes Reguladoras de Genes , Genoma/genética , Genoma de Planta
2.
PLoS Genet ; 19(10): e1011000, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819989

RESUMEN

In Arabidopsis thaliana, stomata are composed of two guard cells that control the aperture of a central pore to facilitate gas exchange between the plant and its environment, which is particularly important during photosynthesis. Although leaves are the primary photosynthetic organs of flowering plants, floral organs are also photosynthetically active. In the Brassicaceae, evidence suggests that silique photosynthesis is important for optimal seed oil content. A group of transcription factors containing MADS DNA binding domains is necessary and sufficient to confer floral organ identity. Elegant models, such as the ABCE model of flower development and the floral quartet model, have been instrumental in describing the molecular mechanisms by which these floral organ identity proteins govern flower development. However, we lack a complete understanding of how the floral organ identity genes interact with the underlying leaf development program. Here, we show that the MADS domain transcription factor AGAMOUS (AG) represses stomatal development on the gynoecial valves, so that maturation of stomatal complexes coincides with fertilization. We present evidence that this regulation by AG is mediated by direct transcriptional repression of a master regulator of the stomatal lineage, MUTE, and show data that suggests this interaction is conserved among several members of the Brassicaceae. This work extends our understanding of the mechanisms underlying floral organ formation and provides a framework to decipher the mechanisms that control floral organ photosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores , Proteínas de Plantas/genética
3.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175955

RESUMEN

MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.


Asunto(s)
Proteínas de Dominio MADS , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Dominio MADS/metabolismo , ADN , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37043523

RESUMEN

During development of flowering plants, some MIKC-type MADS-domain transcription factors (MTFs) exert their regulatory function as heterotetrameric complexes bound to two sites on the DNA of target genes. This way they constitute "floral quartets" or related "floral quartet-like complexes" (FQCs), involving a unique multimeric system of paralogous protein interactions. Tetramerization of MTFs is brought about mainly by interactions of keratin-like (K) domains. The K-domain associated with the more ancient DNA-binding MADS-domain during evolution in the stem group of extant streptophytes (charophyte green algae + land plants). However, whether this was sufficient for MTF tetramerization and FQC formation to occur, remains unknown. Here, we provide biophysical and bioinformatic data indicating that FQC formation likely originated in the stem group of land plants in a sublineage of MIKC-type genes termed MIKCC-type genes. In the stem group of this gene lineage, the duplication of the most downstream exon encoding the K-domain led to a C-terminal elongation of the second K-domain helix, thus, generating the tetramerization interface found in extant MIKCC-type proteins. In the stem group of the sister lineage of the MIKCC-type genes, termed MIKC*-type genes, the duplication of two other K-domain exons occurred, extending the K-domain at its N-terminal end. Our data indicate that this structural change prevents heterodimerization between MIKCC-type and MIKC*-type proteins. This way, two largely independent gene regulatory networks could be established, featuring MIKCC-type or MIKC*-type proteins, respectively, that control different aspects of plant development.


Asunto(s)
Proteínas de Dominio MADS , Factores de Transcripción , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Dominio MADS/genética , Genes de Plantas , Exones , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
5.
bioRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778228

RESUMEN

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

6.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948378

RESUMEN

Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Phytoplasma/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Phytoplasma/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo
7.
Plant Mol Biol ; 105(4-5): 543-557, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486697

RESUMEN

KEY MESSAGE: We studied the DNA-binding profile of the MADS-domain transcription factor SEPALLATA3 and mutant variants by SELEX-seq. DNA-binding characteristics of SEPALLATA3 mutant proteins lead us to propose a novel DNA-binding mode. MIKC-type MADS-domain proteins, which function as essential transcription factors in plant development, bind as dimers to a 10-base-pair AT-rich motif termed CArG-box. However, this consensus motif cannot fully explain how the abundant family members in flowering plants can bind different target genes in specific ways. The aim of this study was to better understand the DNA-binding specificity of MADS-domain transcription factors. Also, we wanted to understand the role of a highly conserved arginine residue for binding specificity of the MADS-domain transcription factor family. Here, we studied the DNA-binding profile of the floral homeotic MADS-domain protein SEPALLATA3 by performing SELEX followed by high-throughput sequencing (SELEX-seq). We found a diverse set of bound sequences and could estimate the in vitro binding affinities of SEPALLATA3 to a huge number of different sequences. We found evidence for the preference of AT-rich motifs as flanking sequences. Whereas different CArG-boxes can act as SEPALLATA3 binding sites, our findings suggest that the preferred flanking motifs are almost always the same and thus mostly independent of the identity of the central CArG-box motif. Analysis of SEPALLATA3 proteins with a single amino acid substitution at position 3 of the DNA-binding MADS-domain further revealed that the conserved arginine residue, which has been shown to be involved in a shape readout mechanism, is especially important for the recognition of nucleotides at positions 3 and 8 of the CArG-box motif. This leads us to propose a novel DNA-binding mode for SEPALLATA3, which is different from that of other MADS-domain proteins known.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Mutantes/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/química , ADN de Plantas/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética
8.
Mol Plant Microbe Interact ; 33(9): 1129-1141, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32689871

RESUMEN

Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases.


Asunto(s)
Proteínas Bacterianas/química , Flores/microbiología , Phytoplasma/genética , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/genética , Plantas , Estructura Secundaria de Proteína , Relación Estructura-Actividad
9.
J Exp Bot ; 70(10): 2615-2622, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30870567

RESUMEN

The origin of the angiosperm flower is a long-standing problem of botany and evolutionary biology. One widely accepted milestone towards solving it is the reconstruction of the ancestral flower of extant angiosperms, here termed 'AFEA'. A recent approach employing novel methods gave results that were not anticipated. Most notably the reconstructed phyllotaxis of AFEA soon was criticized and sparked a heated debate in the literature. To better explain, clarify, and perhaps cool the debate, we first summarize the results of previous attempts to reconstruct AFEA and contrast them with the more recent, controversial prediction of its structure. We then outline the major arguments made by contrasting parties in the recent debate. Finally, we discuss two key topics, the molecular mechanism of phyllotaxis and the role of gene regulatory networks during flower development and evolution, that may help to clarify the issue in the intermediate future.


Asunto(s)
Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Evolución Biológica , Flores/genética , Flores/fisiología , Magnoliopsida/genética , Magnoliopsida/fisiología , Filogenia
10.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007417

RESUMEN

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Asunto(s)
Chara/genética , Genoma de Planta , Evolución Biológica , Pared Celular/metabolismo , Chara/crecimiento & desarrollo , Embryophyta/genética , Redes Reguladoras de Genes , Pentosiltransferasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
11.
Trends Plant Sci ; 23(7): 563-576, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29802068

RESUMEN

In a world of global warming, the question emerges whether all plants have suitable mechanisms to keep pace with the rapidly changing environment. Most previous studies have focused on either the ability of plants to rapidly acclimatize via physiological and developmental plasticity, or long-term adaptation over thousands of years. However, we wonder whether plants can also adapt to changes in the environment within only a few generations. We hypothesize that rapidly evolving clusters of tandemly duplicated developmental control genes represent a source for fast adaptation. Specifically, we propose that a tandem cluster of FLC-like MADS-box genes involved in the transition to flowering in Arabidopsis functions as a facilitator for rapid adaptation to changes in ambient temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Proteínas de Dominio MADS/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Variaciones en el Número de Copia de ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética
12.
Plant J ; 95(2): 341-357, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29744943

RESUMEN

SEPALLATA3 of Arabidopsis thaliana is a MADS-domain transcription factor (TF) and a key regulator of flower development. MADS-domain proteins bind to sequences termed 'CArG-boxes' [consensus 5'-CC(A/T)6 GG-3']. Because only a fraction of the CArG-boxes in the Arabidopsis genome are bound by SEPALLATA3, more elaborate principles have to be discovered to better understand which features turn CArG-boxes into genuine recognition sites. Here, we investigate to what extent the shape of the DNA is involved in a 'shape readout' that contributes to the binding of SEPALLATA3. We determined in vitro binding affinities of SEPALLATA3 to DNA probes that all contain the CArG-box motif, but differ in their predicted DNA shape. We found that binding affinity correlates well with a narrow minor groove of the DNA. Substitution of canonical bases with non-standard bases supports the hypothesis of minor groove shape readout by SEPALLATA3. Analysis of mutant SEPALLATA3 proteins further revealed that a highly conserved arginine residue, which is expected to contact the DNA minor groove, contributes significantly to the shape readout. Our studies show that the specific recognition of cis-regulatory elements by a plant MADS-domain TF, and by inference probably also of other TFs of this type, heavily depends on shape readout mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arginina , Secuencia Conservada/genética , ADN de Plantas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología
13.
J Exp Bot ; 69(8): 1943-1954, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29474620

RESUMEN

The development of angiosperm flowers is regulated by homeotic MIKC-type MADS-domain transcription factors that activate or repress target genes via the formation of DNA-bound, organ-specific tetrameric complexes. The protein-protein interaction (PPI) capabilities differ considerably between different MIKC-type proteins. In Arabidopsis thaliana the floral homeotic protein SEPALLATA3 (SEP3) acts as a hub that incorporates numerous other MADS-domain proteins into tetrameric complexes that would otherwise not form. However, the molecular mechanisms that underlie these promiscuous interactions remain largely unknown. In this study, we created a collection of amino acid substitution mutants of SEP3 to quantify the contribution of individual residues on protein tetramerization during DNA-binding, employing methods of molecular biophysics. We show that leucine residues at certain key positions form a leucine-zipper structure that is essential for tetramerization of SEP3, whereas the introduction of physicochemically very similar residues at respective sites impedes the formation of DNA-bound tetramers. Comprehensive molecular evolutionary analyses of MADS-domain proteins from a diverse set of flowering plants revealed exceedingly high conservation of the identified leucine residues within SEP3-subfamily proteins throughout angiosperm evolution. In contrast, MADS-domain proteins that are unable to tetramerize among themselves exhibit preferences for other amino acids at homologous sites. Our findings indicate that the subfamily-specific conservation of amino acid residues at just a few key positions accounts for subfamily-specific interaction capabilities of MADS-domain transcription factors and this has shaped the present-day structure of the PPI network controlling flower development.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Leucina Zippers , Proteínas de Dominio MADS/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Factores de Transcripción/genética
14.
Plant Physiol ; 172(3): 1691-1707, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702842

RESUMEN

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.


Asunto(s)
Brassicaceae/embriología , Frutas/embriología , Semillas/embriología , Brassicaceae/anatomía & histología , Brassicaceae/genética , Brassicaceae/ultraestructura , Regulación hacia Abajo/genética , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo , Genes de Plantas , Germinación/genética , Modelos Biológicos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dispersión de Semillas , Semillas/genética , Semillas/ultraestructura , Homología de Secuencia de Aminoácido
15.
Development ; 143(18): 3259-71, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27624831

RESUMEN

The floral quartet model of floral organ specification poses that different tetramers of MIKC-type MADS-domain transcription factors control gene expression and hence the identity of floral organs during development. Here, we provide a brief history of the floral quartet model and review several lines of recent evidence that support the model. We also describe how the model has been used in contemporary developmental and evolutionary biology to shed light on enigmatic topics such as the origin of land and flowering plants. Finally, we suggest a novel hypothesis describing how floral quartet-like complexes may interact with chromatin during target gene activation and repression.


Asunto(s)
Flores/metabolismo , Proteínas de Dominio MADS/metabolismo , Desarrollo de la Planta/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Evolución Biológica , Flores/fisiología , Proteínas de Dominio MADS/genética , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética
16.
Trends Plant Sci ; 20(12): 798-806, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26463218

RESUMEN

Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Phytoplasma/fisiología , Plantas/microbiología , Arabidopsis/genética , Arabidopsis/microbiología , Evolución Biológica , Evolución Molecular , Flores/crecimiento & desarrollo , Flores/microbiología , Mutación , Phytoplasma/patogenicidad , Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas
17.
Ann Bot ; 114(7): 1431-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24902716

RESUMEN

BACKGROUND AND AIMS: DEFICIENS (DEF)- and GLOBOSA (GLO)-like proteins constitute two sister clades of floral homeotic transcription factors that were already present in the most recent common ancestor (MRCA) of extant angiosperms. Together they specify the identity of petals and stamens in flowering plants. In core eudicots, DEF- and GLO-like proteins are functional in the cell only as heterodimers with each other. There is evidence that this obligate heterodimerization contributed to the canalization of the flower structure of core eudicots during evolution. It remains unknown as to whether this strict heterodimerization is an ancient feature that can be traced back to the MRCA of extant flowering plants or if it evolved later during the evolution of the crown group angiosperms. METHODS: The interactions of DEF- and GLO-like proteins of the early-diverging angiosperms Amborella trichopoda and Nuphar advena and of the magnoliid Liriodendron tulipifera were analysed by employing yeast two-hybrid analysis and electrophoretic mobility shift assay (EMSA). Character-state reconstruction, including data from other species as well, was used to infer the ancestral interaction patterns of DEF- and GLO-like proteins. KEY RESULTS: The yeast two-hybrid and EMSA data suggest that DEF- and GLO-like proteins from early-diverging angiosperms both homo- and heterodimerize. Character-state reconstruction suggests that the ability to form heterodimeric complexes already existed in the MRCA of extant angiosperms and that this property remained highly conserved throughout angiosperm evolution. Homodimerization of DEF- and GLO-like proteins also existed in the MRCA of all extant angiosperms. DEF-like protein homodimerization was probably lost very early in angiosperm evolution and was not present in the MRCA of eudicots and monocots. GLO-like protein homodimerization might have been lost later during evolution, but very probably was not present in the MRCA of eudicots. CONCLUSIONS: The flexibility of DEF- and GLO-like protein interactions in early-diverging angiosperms may be one reason for the highly diverse flower morphologies observed in these species. The results strengthen the hypothesis that a reduction in the number of interaction partners of DEF- and GLO-like proteins, with DEF-GLO heterodimers remaining the only DNA-binding dimers in core eudicots, contributed to developmental robustness, canalization of flower development and the diversification of angiosperms.


Asunto(s)
Evolución Biológica , Proteína DEFICIENS/genética , Proteínas de Homeodominio/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteína DEFICIENS/clasificación , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/clasificación , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/genética , Filogenia , Proteínas de Plantas/clasificación , Multimerización de Proteína , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...