RESUMEN
Autism spectrum disorder (ASD) is manifested by abnormal cell numbers and patches of gene expression disruption in higher-order brain regions. Here, we investigated whether layer-specific changes in glia/neuron ratios (GNR) characterize patches in the dorsolateral prefrontal cortex (DL-PFC) of children with ASD. We analyzed high-resolution digital images of postmortem human brains from 11 ASD and 11 non-ASD children obtained from the Autism Study of the Allen Human Brain Atlas. We found the GNR is overall reduced in the ASD DL-PFC. Moreover, layers II-III belonging to patches presented a lower GNR in comparison with layers V-VI. We here provide a new insight into how brain cells are arranged within patches that contributes to elucidate how neurodevelopmental programs are altered in ASD.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Niño , Trastorno del Espectro Autista/genética , Neuronas/metabolismo , Neuroglía/metabolismo , Expresión Génica , Corteza Prefrontal/metabolismoRESUMEN
Brain aging involves regional alterations of specific cellular subpopulations in the human hippocampus: a network hub for memory consolidation. The present study investigates whether age, sex, education years, and the concentration of neuropathological and inflammatory proteins influence neuronal-type marker expression in the elderly hippocampus. We analyzed the digital images (1 µm/pixel) of postmortem hippocampal sections from 19 non-demented individuals (from 78 to 99 years). This material was obtained from the "Aging Dementia and TBI Study" open database. Brain samples were processed through in situ hybridization (ISH) for the immunodetection of VGLUT1 (glutamatergic transporter) and GAT1 (GABAergic transporter) and mRNAs and Luminex protein quantifications. After image acquisition, we delineated the dentate gyrus, CA 3/2, and CA1 hippocampal subdivisions. Then, we estimated the area fraction in which the ISH markers were expressed. Increased VGLUT1 was observed in multiple hippocampal subfields at late ages. This glutamatergic marker is positively correlated with beta-amyloid and tau proteins and negatively correlated with interleukin-7 levels. Additionally, education years are positively correlated with GAT1 in the hippocampus of elderly women. This GABAergic marker expression is associated with interferon-gamma and brain-derived neurotrophic factor levels. These associations can help to explain how hippocampal sub-regions and neurotransmitter systems undergo distinct physiological changes during normal aging.