Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(58): 35185-35197, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35515667

RESUMEN

3'-N-(2-Thio-1,3,2-oxathiaphospholane) derivatives of 5'-O-DMT-3'-amino-2',3'-dideoxy-ribonucleosides (NOTP-N), that bear a 4,4-unsubstituted, 4,4-dimethyl, or 4,4-pentamethylene substituted oxathiaphospholane ring, were synthesized. Within these three series, NOTP-N differed by canonical nucleobases (i.e., AdeBz, CytBz, GuaiBu, or Thy). The monomers were chromatographically separated into P-diastereomers, which were further used to prepare NNPSN' dinucleotides (3), as well as short P-stereodefined oligo(deoxyribonucleoside N3'→O5' phosphoramidothioate)s (NPS-) and chimeric NPS/PO- and NPS/PS-oligomers. The condensation reaction for NOTP-N monomers was found to be 5-6 times slower than the analogous OTP derivatives. When the 5'-end nucleoside of a growing oligomer adopts a C3'-endo conformation, a conformational 'clash' with the incoming NOTP-N monomer takes place, which is a main factor decreasing the repetitive yield of chain elongation. Although both isomers of NNPSN' were digested by the HINT1 phosphoramidase enzyme, the isomers hydrolyzed at a faster rate were tentatively assigned the R P absolute configuration. This assignment is supported by X-ray analysis of the protected dinucleotide DMTdGiBu NPSMeTOAc, which is P-stereoequivalent to the hydrolyzed faster P-diastereomer of dGNPST.

2.
Org Biomol Chem ; 13(1): 269-76, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25363356

RESUMEN

Chimeric oligonucleotides containing phosphodiester and phosphorothioate linkages have been obtained using the solid phase synthesis. The oligonucleotide parts possessing natural internucleotide phosphate bonds were assembled using commercially available nucleoside 3'-O-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidites 7 whereas the phosphorothioate segment was built using nucleoside 3'-O-(2-thio-1,3,2-oxathiaphospholanes) 3. The oxidation steps, crucial for the conversion of phosphite linkages into the phosphate moieties, were conducted using tert-butylperoxy-trimethylsilane, and this reagent was not harmful to the diester phosphorothioate linkages. When P-diastereopure nucleoside 3'-O-(2-thio-1,3,2-oxathiaphospholane) monomers were employed the resulting chimeric backbone retained the P-stereoregularity of the phosphorothioate units.


Asunto(s)
Nucleótidos/química , Compuestos Organofosforados/química , Fosfatos/química , Oligonucleótidos Fosforotioatos/química , Ribosa/análogos & derivados , Oxidantes/química , Ribosa/química , Silanos/química
3.
Bioorg Med Chem ; 22(7): 2133-40, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24631359

RESUMEN

Gemcitabine (dFdC) is a cytidine analog remarkably active against a wide range of solid tumors. Inside a cell, gemcitabine is phosphorylated by deoxycytidine kinase to yield gemcitabine monophosphate, further converted to gemcitabine di- and triphosphate. The most frequent form of acquired resistance to gemcitabine in vitro is the deoxycytidine kinase deficiency. Thus, proper prodrugs carrying the 5'-pdFdC moiety may help to overcome this problem. A series of new derivatives of gemcitabine possessing N-acyl(thio)phosphoramidate moieties were prepared and their cytotoxic properties were determined. N-Acyl-phosphoramidate derivatives of gemcitabine have similar cytotoxicity as gemcitabine itself, and have been found accessible to the cellular enzymes. The nicotinic carboxamide derivative of gemcitabine 5'-O-phosphorothioate occurred to be the best inhibitor of bacterial DNA polymerase I and human DNA polymerase α.


Asunto(s)
Amidas/farmacología , ADN Polimerasa I/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Ácidos Fosfóricos/farmacología , Profármacos/farmacología , Amidas/síntesis química , Amidas/química , ADN Polimerasa I/metabolismo , Desoxicitidina/síntesis química , Desoxicitidina/química , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Células HeLa , Humanos , Células K562 , Estructura Molecular , Ácidos Fosfóricos/síntesis química , Ácidos Fosfóricos/química , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad , Gemcitabina
4.
Antivir Chem Chemother ; 21(3): 143-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21233535

RESUMEN

BACKGROUND: pyrimidine nucleoside analogues represent an established class of clinically useful antiviral agents. Once inside the cell, they are activated by a series of intracellular phosphorylation steps to produce 5´-triphosphate derivatives. In many cases, nucleoside analogues are poor substrates for the cellular kinases needed for their activation. It is clear that intracellular introduction of nucleoside analogues as phosphorylated metabolites (so called pronucleotides) could circumvent difficulties associated with the use of non-phosphorylated nucleoside analogues. METHODS: among the current diverse pronucleotide approaches, nucleoside phosphoramidate derivatives appear to be an interesting class of potential antiviral agents because of the known relatively low stability of the P-N bond in cellular media. On the basis of oxathiaphospholane chemistry, a series of novel conjugates of 5´-O-phosphorylated zidovudine (AZT) and stavudine (d4T) with amino acids carboxamidates were obtained. The synthesis was performed using N-(2-thiono-1,3,2-oxathiaphospholane) derivatives of amino acids carboxamides as precursors. RESULTS: all synthesized compounds were studied against DNA and RNA viruses. Specific antiviral activities were only detected against HIV type-1 and HIV type-2 in MT-4 cell cultures at compound concentrations that were equally active or slightly inferior to the activity of their parent drugs (2- to 20-fold for the AZT prodrugs and 6- to 40-fold for the d4T prodrugs). The compounds were also evaluated for their anti-HIV activity in CEM and in CEM thymidine-kinase-deficient (CEM/TK(-)) cell cultures. CONCLUSIONS: loss of compound antiviral potency in the CEM/TK(-) cells suggested an eventual conversion of the test compounds to the free nucleosides prior to further phosphorylation to the active 5´-triphosphate metabolite.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Nucleósidos/síntesis química , Nucleósidos/farmacología , Ácidos Fosfóricos/síntesis química , Ácidos Fosfóricos/farmacología , Antivirales/química , Técnicas de Cultivo de Célula , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA