Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011332, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37043478

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.0030119.].

2.
Biotechnol Biofuels ; 8: 65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25984234

RESUMEN

BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels. RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture. CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.

3.
PLoS One ; 8(4): e61375, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23613840

RESUMEN

Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m(-2) s(-1)) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Hidrógeno/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis/fisiología , Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/genética , Fotosíntesis/genética , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA