Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 127: 34-45, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017778

RESUMEN

Disruption of the endothelial barrier in response to Gram positive (G+) bacterial toxins is a major complication of acute lung injury (ALI) and can be further aggravated by antibiotics which stimulate toxin release. The integrity of the pulmonary endothelial barrier is mediated by the balance of disruptive forces such as the small GTPase RhoA, and protective forces including endothelium-derived nitric oxide (NO). How NO protects against the barrier dysfunction is incompletely understood and our goal was to determine whether NO and S-nitrosylation can modulate RhoA activity and whether this mechanism is important for G+ toxin-induced microvascular permeability. We found that the G+ toxin listeriolysin-O (LLO) increased RhoA activity and that NO and S-NO donors inhibit RhoA activity. RhoA was robustly S-nitrosylated as determined by biotin-switch and mercury column analysis. MS revealed that three primary cysteine residues are S-nitrosylated including cys16, cys20 and cys159. Mutation of these residues to serine diminished S-nitrosylation to endogenous NO and mutant RhoA was less sensitive to inhibition by S-NO. G+-toxins stimulated the denitrosylation of RhoA which was not mediated by S-nitrosoglutathione reductase (GSNOR), thioredoxin (TRX) or thiol-dependent enzyme activity but was instead stimulated directly by elevated calcium levels. Calcium-promoted the direct denitrosylation of WT but not mutant RhoA and mutant RhoA adenovirus was more effective than WT in disrupting the barrier integrity of human lung microvascular endothelial cells. In conclusion, we reveal a novel mechanism by which NO and S-nitrosylation reduces RhoA activity which may be of significance in the management of pulmonary endothelial permeability induced by G+-toxins.


Asunto(s)
Toxinas Bacterianas/farmacología , Endotelio Vascular/metabolismo , Proteínas de Choque Térmico/farmacología , Proteínas Hemolisinas/farmacología , Compuestos Nitrosos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Pulmón/irrigación sanguínea , Microvasos/metabolismo , Mutación , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Permeabilidad , Proteína de Unión al GTP rhoA/genética
2.
Proc Natl Acad Sci U S A ; 97(25): 13543-8, 2000 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-11095728

RESUMEN

Nitros(yl)ation is a widespread protein modification that occurs during many physiological and pathological processes. It can alter both the activity and function of a protein. Nitric oxide (( small middle dot)NO) has been implicated in this process, but its mechanism remained uncertain. ( small middle dot)NO is unable to react with nucleophiles under oxygen-free conditions, suggesting that its higher oxides, such as N(2)O(3), were actually nitrosylating agents. However, low concentrations and short lifespans of these species in vivo raise the question of how they could efficiently locate target proteins. Here we demonstrate that at physiological concentrations of ( small middle dot)NO, N(2)O(3) forms inside protein-hydrophobic cores and causes nitrosylation within the protein interior. This mechanism of protein modification has not been characterized, because all previously described mechanisms (e.g., phosphorylation, acetylation, ADP-ribosylation, etc.) occur via attack on a protein by an external modification agent. Oxidation of ( small middle dot)NO to N(2)O(3) is facilitated by micellar catalysis, which is mediated by the hydrophobic phase of proteins. Thus, a target protein seems to be a catalyst of its own nitrosylation. One of the applications of this finding, as we report here, is the design of specific hydrophobic compounds whose cooperation with ( small middle dot)NO and O(2) allows the rapid inactivation of target enzymes to occur.


Asunto(s)
Compuestos Nitrosos/metabolismo , Proteínas/metabolismo , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...