Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894622

RESUMEN

Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease.


Asunto(s)
Enfermedad de Fabry , alfa-Galactosidasa , Ratones , Animales , alfa-Galactosidasa/genética , Enfermedad de Fabry/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Hidrolasas , Radioisótopos de Flúor/química
2.
ChemMedChem ; 18(21): e202100406, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34486233

RESUMEN

Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuralgia , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inflamación/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hidrolasas , Monoacilglicerol Lipasas
3.
J Med Chem ; 64(9): 5956-5972, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33900772

RESUMEN

N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Isotiocianatos/química , Isotiocianatos/farmacología , Amidohidrolasas/metabolismo , Estabilidad de Medicamentos , Humanos , Hidrólisis , Relación Estructura-Actividad
4.
Sci Rep ; 10(1): 18531, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116203

RESUMEN

Inhibition of human Monoacylglycerol Lipase (hMGL) offers a novel approach for treating neurological diseases. The design of inhibitors, targeting active-inactive conformational transitions of the enzyme, can be aided by understanding the interplay between structure and dynamics. Here, we report the effects of mutations within the catalytic triad on structure, conformational gating and dynamics of hMGL by combining kinetics, NMR, and HDX-MS data with metadynamics simulations. We found that point mutations alter delicate conformational equilibria between active and inactive states. HDX-MS reveals regions of the hMGL that become substantially more dynamic upon substitution of catalytic acid Asp-239 by alanine. These regions, located far from the catalytic triad, include not only loops but also rigid α-helixes and ß-strands, suggesting their involvement in allosteric regulation as channels for long-range signal transmission. The results identify the existence of a preorganized global communication network comprising of tertiary (residue-residue contacts) and quaternary (rigid-body contacts) networks that mediate robust, rapid intraprotein signal transmission. Catalytic Asp-239 controls hMGL allosteric communications and may be considered as an essential residue for the integration and transmission of information to enzymes' remote regions, in addition to its well-known role to facilitate Ser-122 activation. Our findings may assist in the identification of new druggable sites in hMGL.


Asunto(s)
Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Monoacilglicerol Lipasas/fisiología , Regulación Alostérica , Catálisis , Humanos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Mutación Missense , Conformación Proteica , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 28(1): 115195, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31761726

RESUMEN

N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Cianamida/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Amidohidrolasas/metabolismo , Animales , Cianamida/síntesis química , Cianamida/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Modelos Moleculares , Estructura Molecular , Ratas , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 27(1): 55-64, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446439

RESUMEN

Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process "intrinsic reversibility" was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with "tunable' adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ∼4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.


Asunto(s)
Carbamatos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Glaucoma/tratamiento farmacológico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Carbamatos/síntesis química , Carbamatos/química , Carbamatos/farmacocinética , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Humanos , Masculino , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoacilglicerol Lipasas/química , Piperazinas/síntesis química , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Ratas , Relación Estructura-Actividad
7.
Sci Rep ; 8(1): 1719, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379013

RESUMEN

An understanding of how conformational dynamics modulates function and catalysis of human monoacylglycerol lipase (hMGL), an important pharmaceutical target, can facilitate the development of novel ligands with potential therapeutic value. Here, we report the discovery and characterization of an allosteric, regulatory hMGL site comprised of residues Trp-289 and Leu-232 that reside over 18 Å away from the catalytic triad. These residues were identified as critical mediators of long-range communication and as important contributors to the integrity of the hMGL structure. Nonconservative replacements of Trp-289 or Leu-232 triggered concerted motions of structurally distinct regions with a significant conformational shift toward inactive states and dramatic loss in catalytic efficiency of the enzyme. Using a multimethod approach, we show that the dynamically relevant Trp-289 and Leu-232 residues serve as communication hubs within an allosteric protein network that controls signal propagation to the active site, and thus, regulates active-inactive interconversion of hMGL. Our findings provide new insights into the mechanism of allosteric regulation of lipase activity, in general, and may provide alternative drug design possibilities.


Asunto(s)
Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Regulación Alostérica , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Monoacilglicerol Lipasas/química , Proteínas Mutantes/química , Conformación Proteica
8.
Psychopharmacology (Berl) ; 233(12): 2265-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048155

RESUMEN

RATIONALE: Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. OBJECTIVE: This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. MATERIALS AND METHODS: AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. RESULTS: Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. CONCLUSIONS: Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/antagonistas & inhibidores , Náusea/tratamiento farmacológico , Náusea/enzimología , Vómito Precoz/tratamiento farmacológico , Vómito Precoz/enzimología , Enfermedad Aguda , Amidohidrolasas/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Modelos Animales de Enfermedad , Endocannabinoides/farmacología , Inhibidores Enzimáticos/farmacología , Masculino , Monoacilglicerol Lipasas/metabolismo , Ratas , Ratas Sprague-Dawley
9.
J Biol Chem ; 291(6): 2556-65, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26555264

RESUMEN

The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.


Asunto(s)
Monoacilglicerol Lipasas/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad
10.
J Med Chem ; 58(2): 665-81, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25470070

RESUMEN

We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (-)-Δ(8)-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemotype for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well as controlled deactivation by plasma esterases. We have also probed the chain's polar characteristics with regard to fast onset and short duration of action. Our lead molecule, namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for CB receptors and is deactivated by plasma esterases while the respective acid metabolite is inactive. In further in vitro and in vivo experiments, the compound was found to be a remarkably potent and efficacious CB1 receptor agonist with relatively fast onset/offset of action.


Asunto(s)
Dronabinol/análogos & derivados , Dronabinol/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...