Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825655

RESUMEN

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Asunto(s)
Bacillus , Biodegradación Ambiental , Carbonato de Calcio , ARN Ribosómico 16S , Arena , Microbiología del Suelo , Urea , Urea/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/enzimología , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Arena/microbiología , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Temperatura , Filogenia , Precipitación Química
3.
Environ Sci Pollut Res Int ; 30(58): 121338-121353, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996597

RESUMEN

Antibiotics are one of the greatest inventions in human history and are used worldwide on an enormous scale. Besides its extensive usage in medical and veterinary arenas to treat and prevent the infection, its application is very prominent in other fields, including agriculture, aquaculture, and horticulture. In recent decades, the increased consumption of antibiotics in China saw a vast increase in its production and disposal in various environments. However, in this post-antibiotic era, the abuse and misuse of these valuable compounds could lead to the unreversible consequence of drug resistance. In China, antibiotics are given a broad discussion in various fields to reveal their impact on both human/animals health and the environment. To our knowledge, we are the first paper to look back at the development trend of antibiotic-related studies in China with qualitative and quantitative bibliometric analysis from the past decades. Our study identified and analyzed 5559 papers from its inception (1991) to December 6, 2021, from the Web of Science Core Collection database. However, with few authors and institutions focusing on long-term studies, we found the quality of contributions was uneven. Studies mainly focused on areas such as food science, clinical research, and environmental studies, including molecular biology, genetics and environmental, ecotoxicology, and nutrition, which indicate possible primary future trends. Our study reports on including potentially new keywords, studies' milestones, and their contribution to antibiotic research. We offer potential topics that may be important in upcoming years that could help guide future research.


Asunto(s)
Agricultura , Antibacterianos , Animales , Humanos , China , Acuicultura , Bibliometría
4.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37777842

RESUMEN

AIM: Organic fertilizer application significantly stimulates nitrous oxide (N2O) emissions from agricultural soils. Plant growth-promoting rhizobacteria (PGPR) strains are the core of bio-fertilizer or bio-organic fertilizer, while their beneficial effects are inhibited by environmental conditions, such as alkali and salt stress observed in organic manure or soil. This study aims to screen alkali- and salt-resistant PGPR that could mitigate N2O emission after applying strain-inoculated organic fertilizer. METHODS AND RESULTS: Among the 29 candidate strains, 11 (7 Bacillus spp., 2 Achromobacter spp., 1 Paenibacillus sp., and 1 Pseudomonas sp.) significantly mitigated N2O emissions from the organic fertilizer after inoculation. Seven strains were alkali tolerant (pH 10) and five were salt tolerant (4% salinity) in pure culture. Seven strains were selected for further evaluation in two agricultural soils. Five of these seven strains could significantly decrease the cumulative N2O emissions from Anthrosol, while six could significantly decrease the cumulative N2O emissions from Cambisol after the inoculation into the granular organic fertilizer compared with the non-inoculated control. CONCLUSIONS: Inoculating alkali- and salt-resistant PGPR into organic fertilizer can reduce N2O emissions from soils under microcosm conditions. Further studies are needed to investigate whether these strains will work under field conditions, under higher salinity, or at different soil pH.


Asunto(s)
Álcalis , Fertilizantes , Fertilizantes/análisis , Plantas Tolerantes a la Sal , Óxido Nitroso/análisis , Agricultura , Suelo
5.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401147

RESUMEN

AIM: Ammonia released during the storage period from pig manure causes severe air pollution and odor issues, ultimately leading to nitrogen loss in the manure. In this study, we investigated the application of 13 Bacillus spp. strains isolated from paddy soil and their potential to minimize reactive nitrogen loss during pig manure storage at 28°C and initial moisture content at 76.45%. METHODS AND RESULTS: We selected five strains of Bacillus spp. named H3-1, H4-10, H5-5, H5-9, and Y3-28, capable of reducing ammonia emissions by 23.58%, 24.65%, 25.58%, 25.36%, and 26.82% in pig manure over 60 days compared to control. We further tested their ability on various pH, salinity, and ammonium-nitrogen concentrations for future field applications. Our investigation revealed that certain bacteria could survive and grow at pH 6, 8, and 10; 4, 8, and 10% salinity and up to 8 g l-1 of ammonium-nitrogen concentration. CONCLUSIONS: The results from our study show that saline and ammonium-nitrogen tolerant Bacillus strains isolated from soil can potentially reduce ammonia emissions in pig manure, even at high moisture content during their storage period.


Asunto(s)
Compuestos de Amonio , Bacillus , Animales , Porcinos , Amoníaco/análisis , Estiércol/microbiología , Nitrógeno/análisis , Suelo , Cloruro de Sodio , Concentración de Iones de Hidrógeno
6.
Artículo en Inglés | MEDLINE | ID: mdl-35886559

RESUMEN

The application of iron powder stimulated the growth of iron-reducing bacteria as a respiratory substrate and enhanced their nitrogen (N)-fixing activity in flooded paddy soils. High N fertilization (urea) in the flooded paddy soils has caused adverse environmental impacts such as ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching. This study aims to investigate the effects of N fertilization rates in combination with an iron amendment on rice yields and N losses from flooded paddy fields. We performed a 2-year field plot experiment with traditional rice-wheat rotation in China's Yangtze River Delta. The investigation consisted of seven treatments, including 100%, 80%, 60%, and 0% of the conventional N (urea and commercial organic manure) fertilization rate, and 80%, 60%, and 0% of the conventional N with the iron powder (≥99% purity) amendment. The rice yields decreased with a reduction in the conventional N fertilization rate, whereas they were comparable after the iron application under the 80% and 60% conventional N rate. The critical N losses, including NH3 volatilization, N2O emissions, and NO3- and NH4+ leaching, generally decreased with a reduction in the conventional N fertilization rate. These N losses were significantly greater after the iron amendment compared with the non-amended treatments under the 80% and 60% conventional N fertilization rate in the first rice-growing season. However, it was comparable between the iron-amended and the non-amended treatments in the second season. Furthermore, NO3- leaching was the most significant N loss throughout the two rice seasons, followed by NH3 volatilization. The iron amendment significantly increased soil Fe2+ content compared with the non-amended treatments irrespective of N fertilization, suggesting the reduction of amended iron by iron-reducing bacteria and their simultaneous N fixation. A combination of the iron application with 60-80% of the conventional N fertilization rate could maintain rice yields similar to the conventional N fertilization rate while reducing the critical N losses in the flooded paddy field tested in this study. Our study leads to the establishment of novel and practical rice cultivation, which is a step towards the development of green agriculture.


Asunto(s)
Oryza , Suelo , Agricultura , Fertilización , Fertilizantes/análisis , Hierro , Nitrógeno/análisis , Óxido Nitroso/análisis , Oryza/química , Polvos , Suelo/química , Urea
7.
Environ Monit Assess ; 194(8): 575, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821345

RESUMEN

Anthropogenic deposition of nitrogen (N) and elevated CO2 (eaCO2) are expected to increase continuously and rapidly in the near future and influence global carbon cycling. These parameters affect the ecosystem by regulating the microbial community and contribute to soil organic matter decomposition. The study was performed to understand the effects of N additions (4 and 6mgl-1) and eaCO2 (700 ppm) on carbon (C)/nitrogen (N) content in the soil, microbial community, and plant biomass (Alternanthera philoxeroides species). The results showed that when the atmospheric CO2 concentration was raised, the total organic carbon (TOC) in the soil statistically increased (P < 0.05) by 4% and 3% under low and high N additions respectively, while the inorganic carbon content also increased by 1% and 3% (P > 0.05) under the same conditions. The increase in the soil TOC content was a result of the movement of carbon from water to the soil due to the presence of vascular tissues of plants in the water. The redundancy analysis (RDA) results revealed that the presence of plant species was responsible for the carbon content increment in the soil. The plant biomass content increased by 30.96% (P = 0.081) and 31.36%, (P = 0.002) under low and high N addition respectively due to the increment in atmospheric CO2. The nitrogen content in the plant species decreased (p > 0.05) by 8.62% and 6.25% at low and high N addition respectively when atmospheric CO2 was raised. This suggests that soil microbes competed with the plants for inorganic nitrogen in the soil and the microbes used up the inorganic nitrogen before it got to the plants. The gram-positive bacteria and fungi population decreased under high N addition and eaCO2 while gram-negative bacteria increased, suggesting that N additions and eaCO2 affected the microbial function and correlated with the nitrogen reduction in the soil. The results from this study serve as a guide to researchers and stakeholders in making policies with regard to the constant increasing CO2 concentration in the atmosphere.


Asunto(s)
Microbiota , Nitrógeno , Carbono/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Plantas , Suelo , Microbiología del Suelo , Agua/análisis , Humedales
8.
Environ Monit Assess ; 194(2): 64, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993654

RESUMEN

Urban recreational lakes are impacted by consistent anthropogenic activities and are significant sources of heavy metals and antibiotic resistance genes (ARGs). In this study, three urban lakes of varying size and anthropogenic impact in Nanjing, China, were investigated for the abundance of ten ARGs, six physicochemical factors and four heavy metals. Correlations between heavy metals and physicochemical parameters against ARGs were performed to investigate the presence of ARGs in the lakes. The water quality data indicated that the lakes were on par with levels 3 and 4 of the Chinese surface water environmental standards, signifying disturbing pollution levels in the lakes. The lakes were dominant with high amounts of sul1, sul2 and strA genes, and the sum of these three genes appropriated over 38.9-84.4% in all three lakes, while the sum of tetM, tetQ and ermB genes occupied a minor proportion (0.1-1.4%). High levels of vancomycin resistance genes were found in the three lakes. Spearman analysis indicated that Chlα, cadmium, lead and copper had a significant positive correlation with sul2 and strB. The results of redundancy analysis displayed that Chlα and co-selection with certain heavy metals were the major factors driving the propagation of specific genes in three lakes. We believe our study contributes by adding further knowledge to existing antibiotic resistance gene abundance studies in recreational urban lakes with significant anthropogenic impacts.


Asunto(s)
Lagos , Metales Pesados , Efectos Antropogénicos , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Bacterianos , Metales Pesados/análisis , Metales Pesados/toxicidad , Calidad del Agua
9.
PLoS One ; 16(7): e0254676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270610

RESUMEN

Microbially Induced Carbonate Precipitation (MICP) is currently viewed as one of the potential prominent processes for field applications towards the prevention of soil erosion, healing cracks in bricks, and groundwater contamination. Typically, the bacteria involved in MICP manipulate their environment leading to calcite precipitation with an enzyme such as urease, causing calcite crystals to form on the surface of grains forming cementation bonds between particles that help in reducing soil permeability and increase overall compressive strength. In this paper, the main focus is to study the MICP performance of three indigenous landfill bacteria against a well-known commercially bought MICP bacteria (Bacillus megaterium) using sand columns. In order to check the viability of the method for potential field conditions, the tests were carried out at slightly less favourable environmental conditions, i.e., at temperatures between 15-17°C and without the addition of urease enzymes. Furthermore, the sand was loose without any compaction to imitate real ground conditions. The results showed that the indigenous bacteria yielded similar permeability reduction (4.79 E-05 to 5.65 E-05) and calcium carbonate formation (14.4-14.7%) to the control bacteria (Bacillus megaterium), which had permeability reduction of 4.56 E-5 and CaCO3 of 13.6%. Also, reasonably good unconfined compressive strengths (160-258 kPa) were noted for the indigenous bacteria samples (160 kPa). SEM and XRD showed the variation of biocrystals formation mainly detected as Calcite and Vaterite. Overall, all of the indigenous bacteria performed slightly better than the control bacteria in strength, permeability, and CaCO3 precipitation. In retrospect, this study provides clear evidence that the indigenous bacteria in such environments can provide similar calcite precipitation potential as well-documented bacteria from cell culture banks. Hence, the idea of MICP field application through biostimulation of indigenous bacteria rather than bioaugmentation can become a reality in the near future.


Asunto(s)
Carbonato de Calcio/química , Microbiota , Microbiología del Suelo , Bacillus/metabolismo , Carbonato de Calcio/metabolismo , Precipitación Química , Conservación de los Recursos Naturales/métodos , Arena/química , Arena/microbiología , Suelo/química
10.
Environ Sci Ecotechnol ; 6: 100096, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36159179

RESUMEN

In the last two decades, developments in the area of biomineralization has yielded promising results making it a potentially environmentally friendly technique for a wide range of applications in engineering and wastewater/heavy metal remediation. Microbially Induced Carbonate Precipitation (MICP) has led to numerous patented applications ranging from novel strains and nutrient sources for the precipitation of biominerals. Studies are being constantly published to optimize the process to become a promising, cost effective, ecofriendly approach when compared with the existing traditional remediation technologies which are implemented to solve multiple contamination/pollution issues. Heavy metal pollution still poses a major threat towards compromising the ecosystem. The removal of heavy metals is of high importance due to their recalcitrance and persistence in the environment. In that perspective, this paper reviews the current and most significant discoveries and applications of MICP towards the conversion of heavy metals into heavy metal carbonates and removal of calcium from contaminated media such as polluted water. It is evident from the literature survey that although heavy metal carbonate research is very effective in removal, is still in its early stages but could serve as a solution if the microorganisms are stimulated directly in the heavy metal environment.

11.
Can J Microbiol ; 64(12): 945-953, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30148972

RESUMEN

We report an investigation of microbially induced carbonate precipitation by seven indigenous bacteria isolated from a landfill in China. Bacterial strains were cultured in a medium supplemented with 25 mmol/L calcium chloride and 333 mmol/L urea. The experiments were carried out at 30 °C for 7 days with agitation by a shaking table at 130 r/min. Scanning electron microscopic and X-ray diffraction analyses showed variations in calcium carbonate polymorphs and mineral composition induced by all bacterial strains. The amount of carbonate precipitation was quantified by titration. The amount of carbonate precipitated in the medium varied among isolates, with the lowest being Bacillus aerius rawirorabr15 (LC092833) precipitating around 1.5 times more carbonate per unit volume than the abiotic (blank) solution. Pseudomonas nitroreducens szh_asesj15 (LC090854) was found to be the most efficient, precipitating 3.2 times more carbonate than the abiotic solution. Our results indicate that bacterial carbonate precipitation occurred through ureolysis and suggest that variations in carbonate crystal polymorphs and rates of precipitation were driven by strain-specific differences in urease expression and response to the alkaline environment. These results and the method applied provide benchmarking and screening data for assessing the bioremediation potential of indigenous bacteria for containment of contaminants in landfills.


Asunto(s)
Bacterias/metabolismo , Biomineralización , Instalaciones de Eliminación de Residuos , Bacterias/aislamiento & purificación , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Cristalización , Concentración de Iones de Hidrógeno , Difracción de Rayos X
12.
Can J Microbiol ; 64(8): 537-549, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29633622

RESUMEN

The impact of contaminated leachate on groundwater from landfills is well known, but the specific effects on bacterial consortia are less well-studied. Bacterial communities in a landfill and an urban site located in Suzhou, China, were studied using Illumina high-throughput sequencing. A total of 153 944 good-quality reads were produced and sequences assigned to 6388 operational taxonomic units. Bacterial consortia consisted of up to 16 phyla, including Proteobacteria (31.9%-94.9% at landfill, 25.1%-43.3% at urban sites), Actinobacteria (0%-28.7% at landfill, 9.9%-34.3% at urban sites), Bacteroidetes (1.4%-25.6% at landfill, 5.6%-7.8% at urban sites), Chloroflexi (0.4%-26.5% at urban sites only), and unclassified bacteria. Pseudomonas was the dominant (67%-93%) genus in landfill leachate. Arsenic concentrations in landfill raw leachate (RL) (1.11 × 103 µg/L) and fresh leachate (FL2) (1.78 × 103 µg/L) and mercury concentrations in RL (10.9 µg/L) and FL2 (7.37 µg/L) exceeded Chinese State Environmental Protection Administration standards for leachate in landfills. The Shannon diversity index and Chao1 richness estimate showed RL and FL2 lacked richness and diversity when compared with other samples. This is consistent with stresses imposed by elevated arsenic and mercury and has implications for ecological site remediation by bioremediation or natural attenuation.


Asunto(s)
Bacterias/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Consorcios Microbianos/efectos de los fármacos , Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/toxicidad , Bacterias/clasificación , Bacterias/genética , Biodiversidad , China , ADN Bacteriano/genética , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...