Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32989086

RESUMEN

Precursor proteins are translocated across the cytoplasmic membrane in Escherichia coli by the general secretory, or Sec, pathway. The main components of the pathway are the integral membrane heterotrimeric SecYEG complex and the peripheral membrane ATPase, SecA. In this study, we have applied an in vitro assay using inverted cytoplasmic membrane vesicles to investigate the complex cycle that leads to translocation. We compared the apparent rate constants for nine precursors under two experimental conditions, single turnover and multiple turnovers. For each precursor, the rate constant for a single turnover was higher than for multiple turnovers, indicating that a different step limits the rate under the two conditions. We conclude that the rate-limiting step for a single turnover is an early step in the initial phase of transit through the channel, whereas the rate of multiple turnovers is limited by the resetting of the translocon. The presence of the chaperone SecB during multiple turnovers increased the maximal amplitude translocated for the three precursor species tested, pGBP, pPhoA, and proOmpA, and also increased the apparent rate constants for both pGBP and pPhoA. The rate constant for proOmpA was decreased by the presence of SecB.IMPORTANCE Vastly different experimental techniques and conditions have been used to study export in E. coli We demonstrated that altering experimental conditions can change the step that is observed during study. Investigators should consider specific experimental conditions when comparing data from different laboratories, as well as when comparing data from different experiments within a laboratory. We have shown that each precursor species has inherent properties that determine the translocation rate; thus generalizations from studies of a single species must be made with caution. A summary of advantages and disadvantages in use of nine precursors is presented.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canales de Translocación SEC/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC/genética
3.
Langmuir ; 35(37): 12246-12256, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31448613

RESUMEN

Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Adenosina Trifosfato/metabolismo , Activación Enzimática , Translocasas Mitocondriales de ADP y ATP/metabolismo , Transporte de Proteínas , Propiedades de Superficie
4.
Sci Adv ; 5(6): eaav9404, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206019

RESUMEN

Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al Calcio/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Membrana Dobles de Lípidos/química , Proteínas de Transporte de Monosacáridos/química , Proteínas de Unión Periplasmáticas/química , Precursores de Proteínas/química , Proteína SecA/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Multimerización de Proteína , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Proteína SecA/genética , Proteína SecA/metabolismo
5.
J Bacteriol ; 201(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275279

RESUMEN

In all cells, a highly conserved channel transports proteins across membranes. In Escherichia coli, that channel is SecYEG. Many investigations of this protein complex have used purified SecYEG reconstituted into proteoliposomes. How faithfully do activities of reconstituted systems reflect the properties of SecYEG in the native membrane environment? We investigated by comparing three in vitro systems: the native membrane environment of inner membrane vesicles and two methods of reconstitution. One method was the widely used reconstitution of SecYEG alone into lipid bilayers. The other was our method of coassembly of SecYEG with SecA, the ATPase of the translocase. For nine different precursor species we assessed parameters that characterize translocation: maximal amplitude of competent precursor translocated, coupling of energy to transfer, and apparent rate constant. In addition, we investigated translocation in the presence and absence of chaperone SecB. For all nine precursors, SecYEG coassembled with SecA was as active as SecYEG in native membrane for each of the parameters studied. Effects of SecB on transport of precursors faithfully mimicked observations made in vivo From investigation of the nine different precursors, we conclude that the apparent rate constant, which reflects the step that limits the rate of translocation, is dependent on interactions with the translocon of portions of the precursors other than the leader. In addition, in some cases the rate-limiting step is altered by the presence of SecB. Candidates for the rate-limiting step that are consistent with our data are discussed.IMPORTANCE This work presents a comprehensive quantification of the parameters of transport by the Sec general secretory system in the three in vitro systems. The standard reconstitution used by most investigators can be enhanced to yield six times as many active translocons simply by adding SecA to SecYEG during reconstitution. This robust system faithfully reflects the properties of translocation in native membrane vesicles. We have expanded the number of precursors studied to nine. This has allowed us to conclude that the rate constant for translocation varies with precursor species.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Multimerización de Proteína , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Bioquímica/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Membrana Dobles de Lípidos , Técnicas Microbiológicas , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC/genética , Proteína SecA
6.
Protein Sci ; 27(3): 681-691, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247569

RESUMEN

The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino-terminal region of SecA with membrane. We use site-directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co-assembled into lipids with SecYEG to yield highly active translocons, the N-terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N-terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N-terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Dominios Proteicos , Proteolípidos/metabolismo , Proteína SecA
7.
EcoSal Plus ; 7(2)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29165233

RESUMEN

In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Canales de Translocación SEC/genética , Adenosina Trifosfato/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/genética , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
8.
PLoS One ; 12(8): e0183231, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850586

RESUMEN

SecB, a small tetrameric chaperone in Escherichia coli, plays a crucial role during protein export via the general secretory pathway by binding precursor polypeptides in a nonnative conformation and passing them to SecA, the ATPase of the translocon. The dissociation constants for the interactions are known; however to relate studies in vitro to export in a living cell requires knowledge of the concentrations of the proteins in the cell. Presently in the literature there is no report of a rigorous determination of the intracellular concentration of SecB. The values available vary over 60 fold and the details of the techniques used are not given. Here we use quantitative immunoblotting to determine the level of SecB expressed from the chromosome in E.coli grown in two commonly used media. In rich medium SecB was present at 1.6 ± 0.2 µM and in minimal medium at 2.5 ± 0.6 µM. These values allow studies of SecB carried out in vitro to be applied to the situation in the cell as SecB interacts with its binding partners to move precursor polypeptides through the export pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Escherichia coli/metabolismo , Unión Proteica
9.
Sci Rep ; 5: 12550, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228793

RESUMEN

Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.


Asunto(s)
Vidrio , Proteínas de la Membrana/análisis , Microscopía de Fuerza Atómica/métodos , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/química , Silicatos de Aluminio , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Bacteriorodopsinas/análisis , Bacteriorodopsinas/química , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Halobacterium salinarum/química , Procesamiento de Imagen Asistido por Computador , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/química , Microscopía de Fuerza Atómica/instrumentación , Canales de Translocación SEC , Proteína SecA
10.
J Mol Biol ; 427(4): 887-900, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25534082

RESUMEN

During export in Escherichia coli, SecB, a homotetramer structurally organized as a dimer of dimers, forms a complex with two protomers of SecA, which is the ATPase that provides energy to transfer a precursor polypeptide through the membrane via the SecYEG translocon. There are two areas of contact on SecB that stabilize the SecA:SecB complex: the flat sides of the SecB tetramer and the C-terminal 13 residues of SecB. These contacts within the complex are distributed asymmetrically. Breaking contact between SecA and the sides of SecB results in release of only one protomer of SecA yielding a complex of stoichiometry SecA1:SecB4. This complex mediates export; however, the coupling of ATP hydrolysis to movements of the precursor through the translocon is much less efficient than the coupling by the SecA2:SecB4 complex. Here we used heterotetrameric species of SecB to understand the source of the asymmetry in the contacts and its role in the functioning of the complex. The model of interactions presented suggests a way that binding between SecA and SecB might decrease the affinity of precursor polypeptides for SecB and facilitate the transfer to SecA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Multimerización de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
11.
Proc Natl Acad Sci U S A ; 110(29): 11815-20, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818593

RESUMEN

We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Proteínas de la Membrana/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Radioisótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Proteolípidos/metabolismo , Canales de Translocación SEC , Radioisótopos de Azufre/metabolismo , Vesículas Transportadoras/metabolismo
12.
J Biol Chem ; 288(23): 16848-16854, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23609442

RESUMEN

Purified SecYEG was reconstituted into liposomes and studied in near-native conditions using atomic force microscopy. These SecYEG proteoliposomes were active in translocation assays. Changes in the structure of SecYEG as a function of time were directly visualized. The dynamics observed were significant in magnitude (∼1-10 Å) and were attributed to the two large loops of SecY linking transmembrane helices 6-7 and 8-9. In addition, we identified a distribution between monomers and dimers of SecYEG as well as a smaller population of higher order oligomers. This work provides a new vista of the flexible and dynamic structure of SecYEG, an intricate and vital membrane protein.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Transporte Biológico Activo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Canales de Translocación SEC
13.
J Bacteriol ; 193(1): 190-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21037004

RESUMEN

SecA is the ATPase that acts as the motor for protein export in the general secretory, or Sec, system of Escherichia coli. The tetrameric cytoplasmic chaperone SecB binds to precursors of exported proteins before they can become stably folded and delivers them to SecA. During this delivery step, SecB binds to SecA. The complex between SecA and SecB that is maximally active in translocation contains two protomers of SecA bound to a tetramer of SecB. The aminoacyl residues on each protein that are involved in binding the other have previously been identified by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy; however, that study provided no information concerning the relative orientation of the proteins within the complex. Here we used our extensive collection of single-cysteine variants of the two proteins and subjected pairwise combinations of SecA and SecB to brief oxidation to identify residues in close proximity. These data were used to generate a model for the orientation of the two proteins within the complex.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
14.
Protein Sci ; 19(6): 1173-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20512970

RESUMEN

Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane-embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N-terminal residues 2 through 11 of SecA and the C-terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Dominios y Motivos de Interacción de Proteínas/genética , Mapeo de Interacción de Proteínas/métodos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Canales de Translocación SEC , Proteína SecA , Termodinámica
15.
Methods Mol Biol ; 619: 173-90, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20419411

RESUMEN

Site-directed spin-labeling and the analysis of proteins by electron paramagnetic resonance spectroscopy provides a powerful tool for identifying sites of contact within protein complexes at the resolution of aminoacyl side chains. Here we describe the method as we have used it to study interactions of proteins involved in export via the Sec secretory system in Escherichia coli. The method is amendable to the study of most protein interactions.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas/metabolismo , Marcadores de Spin , Unión Proteica
16.
Protein Sci ; 18(9): 1860-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19569227

RESUMEN

SecB, a remarkable chaperone involved in protein export, binds diverse ligands rapidly with high affinity and low specificity. Site-directed spin labeling and electron paramagnetic resonance spectroscopy were used to investigate the surface of interaction on the export chaperone SecB. We examined SecB in complex with the unfolded precursor form of outer membrane protein OmpA as well as with a truncated version of OmpA that includes the transmembrane domain and lacks both the signal peptide and the periplasmic domain. In addition, we studied the binding of SecB to the unfolded mature form of galactose-binding protein, a soluble periplasmic protein. We have previously used the same strategy to map the binding surface for the precursor of galactose-binding protein. We show that for all ligands tested the patterns of contact are the same.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas de Unión al Calcio/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Pliegue de Proteína
17.
J Bacteriol ; 191(3): 978-84, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18978043

RESUMEN

SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Regiones Promotoras Genéticas , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Transporte Biológico , Cromatografía en Capa Delgada , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Immunoblotting , Proteínas de Transporte de Membrana/genética , Canales de Translocación SEC , Proteína SecA
18.
J Mol Biol ; 382(1): 74-87, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18602400

RESUMEN

In all living cells, regulated passage across membranes of specific proteins occurs through a universally conserved secretory channel. In bacteria and chloroplasts, the energy for the mechanical work of moving polypeptides through that channel is provided by SecA, a regulated ATPase. Here, we use site-directed spin labeling and electron paramagnetic resonance spectroscopy to identify the interactive surface used by SecA for each of the diverse binding partners encountered during the dynamic cycle of export. Although the binding sites overlap, resolution at the level of aminoacyl side chains allows us to identify contacts that are unique to each partner. Patterns of constraint and mobilization of residues on that interactive surface suggest a conformational change that may underlie the coupling of ATP hydrolysis to precursor translocation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Motoras Moleculares/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Sitios de Unión , Ligandos , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Proteínas Motoras Moleculares/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Canales de Translocación SEC , Proteína SecA , Marcadores de Spin , Propiedades de Superficie
19.
J Mol Biol ; 363(1): 63-74, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16962134

RESUMEN

Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mapeo de Interacción de Proteínas , Precursores de Proteínas/metabolismo , Marcadores de Spin , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Ligandos , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Pliegue de Proteína , Propiedades de Superficie
20.
Protein Sci ; 15(6): 1379-86, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16731972

RESUMEN

The general secretory, Sec, system translocates precursor polypeptides from the cytosol across the cytoplasmic membrane in Escherichia coli. SecB, a small cytosolic chaperone, captures the precursor polypeptides before they fold and delivers them to the membrane translocon through interactions with SecA. Both SecB and SecA display twofold symmetry and yet the complex between the two is stabilized by contacts that are distributed asymmetrically. Two distinct regions of interaction have been defined previously and here we identify a third. Calorimetric studies of complexes stabilized by different subsets of these interactions were carried out to determine the binding affinities and the thermodynamic parameters that underlie them. We show here that there is no change in affinity when either one of two contact areas out of the three is lacking. This fact and the asymmetry of the binding contacts may be important to the function of the complex in protein export.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Calorimetría/métodos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Complejos Multiproteicos , Mutación , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...