Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nat Commun ; 15(1): 7240, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174553

RESUMEN

Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/µL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/µL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.


Asunto(s)
COVID-19 , Evolución Molecular , Infecciones por VIH , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/genética , Infecciones por VIH/virología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , COVID-19/virología , COVID-19/genética , Glicoproteína de la Espiga del Coronavirus/genética , Recuento de Linfocito CD4 , Mutación , Genoma Viral/genética , Masculino , Femenino , Variación Genética , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto , Filogenia
2.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071380

RESUMEN

HIV-1 infection is initiated by the interaction between the gp120 subunit in the envelope (Env) trimer and the cellular receptor CD4 on host cells. This interaction induces substantial structural rearrangement of the Env trimer. Currently, static structural information for prefusion-closed trimers, CD4-bound prefusion-open trimers, and various antibody-bound trimers is available. However, dynamic features between these static states (e.g., transition structures) are not well understood. Here, we investigate the full transition pathway of a site specifically glycosylated Env trimer between prefusion-closed and CD4-bound-open conformations by collective molecular dynamics and single-molecule Förster resonance energy transfer (smFRET). Our investigations reveal and confirm important features of the transition pathway, including movement of variable loops to generate a glycan hole at the trimer apex and formation or rearrangements of α-helices and ß-strands. Notably, by comparing the transition pathway to known Env-structures, we uncover evidence for a transition intermediate, with four antibodies, Ab1303, Ab1573, b12, and DH851.3, recognizing this intermediate. Each of these four antibodies induce population shifts of Env to occupy a newly observed smFRET state: the "occluded-intermediate" state. We propose this occluded-intermediate state to be both a prevalent state of Env and an on-path conformation between prefusion-closed and CD4-bound-open states, previously overlooked in smFRET analyses.

3.
Adv Sci (Weinh) ; 11(26): e2309268, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704686

RESUMEN

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Camélidos del Nuevo Mundo , VIH-1 , Animales , VIH-1/inmunología , Humanos , Anticuerpos Biespecíficos/inmunología , Camélidos del Nuevo Mundo/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Ratones
4.
Cell Rep ; 43(6): 114285, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38819987

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.


Asunto(s)
Colesterol , Inmunización , Macaca fascicularis , Proproteína Convertasa 9 , Proproteína Convertasa 9/inmunología , Proproteína Convertasa 9/metabolismo , Animales , Humanos , Ratones , Colesterol/metabolismo , Colesterol/sangre , Inmunización/métodos , Receptores de LDL/metabolismo , Femenino , Ratones Endogámicos C57BL
5.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430907

RESUMEN

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Porcinos , Proteínas Virales/genética , Neuraminidasa , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Monoclonales , Anticuerpos Antivirales
6.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38313289

RESUMEN

Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/µL. In PWOH and PWH with CD4 counts ≥200 cells/µL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).

7.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989731

RESUMEN

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Péptidos , Secuencia de Aminoácidos , Vacunas de Subunidad , Pruebas de Neutralización , Productos del Gen env del Virus de la Inmunodeficiencia Humana
8.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37766115

RESUMEN

New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.

9.
iScience ; 26(8): 107403, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554450

RESUMEN

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential N-linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition. Cryo-EM analysis revealed trimers with introduced PNGSs to be prone to disassembly and introduced PNGS to be disordered. Protein-base and glycan-base trimers induced reciprocally symmetric ELISA responses, in which only a small fraction of the antibody response to glycan-base trimers recognized protein-base trimers and vice versa. EM polyclonal epitope mapping revealed glycan-base trimers -even those that were stable biochemically- to elicit antibodies that recognized disassembled trimers. Introduced glycans can thus mask the protein base but their introduction may yield neo-epitopes that dominate the immune response.

10.
Cell Rep ; 42(7): 112755, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436899

RESUMEN

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos Neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Anticuerpos Anti-VIH , Péptidos
11.
Cell Rep ; 42(7): 112711, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436900

RESUMEN

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Pruebas de Neutralización
12.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295404

RESUMEN

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Vacunas Virales , Animales , Ratones , Virus de la Encefalitis Equina Venezolana/genética , Anticuerpos Antivirales , Macaca
13.
MAbs ; 15(1): 2223350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37345226

RESUMEN

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser. The engineered variants exhibited reduced affinity to heparin, reduced polyreactivity, and improved PK in human FcRn-transgenic mice. One variant, VRC07-523LS.v34, with three charge substitutions, had an observed in vivo half-life and an estimated human half-life of 10.8 and 60 days, respectively (versus 5.4 and 38 days for VRC07-523LS) and retained functionality, neutralizing 92% of a 208-strain panel at a geometric mean IC80 <1 µg/mL. Another variant, N6LS.C49, with two charge substitutions, had an observed in vivo half-life and an estimated human half-life of 14.5 and 80 days (versus 9.0 and 44 days for N6LS) and neutralized ~80% of 208 strains at a geometric mean IC80 <1 µg/mL. Since Arg and Lys residues are prevalent in human antibodies, we propose substitution of select Arg or Lys with Asp, Gln, Glu, or Ser in the framework region as a general means to improve PK of therapeutic antibodies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Ratones , Animales , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes , Ratones Transgénicos , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Neutralizantes
14.
J Virol ; 97(5): e0160422, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37098956

RESUMEN

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Animales , Cobayas , Ratones , Anticuerpos Anti-VIH , Isotipos de Inmunoglobulinas , Vacunación , Péptidos , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Infecciones por VIH/prevención & control
15.
MAbs ; 15(1): 2165390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36729903

RESUMEN

Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 µg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 µg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.


Asunto(s)
Anticuerpos Biespecíficos , Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Pruebas de Neutralización , Anticuerpos Anti-VIH , Sitios de Unión
16.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382536

RESUMEN

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Asunto(s)
Anticuerpos Biespecíficos , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia
17.
Vaccines (Basel) ; 12(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250850

RESUMEN

The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 µg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of ß-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.

18.
Nat Struct Mol Biol ; 29(11): 1080-1091, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36344847

RESUMEN

Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.


Asunto(s)
Anticuerpos Neutralizantes , VIH-1 , Animales , Microscopía por Crioelectrón , Macaca mulatta/metabolismo , VIH-1/metabolismo , Tomografía con Microscopio Electrónico , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Anti-VIH
19.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36356572

RESUMEN

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Hemaglutininas , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Antivirales , Hurones , Anticuerpos Neutralizantes , Inmunización
20.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841885

RESUMEN

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA