Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 138: 3-27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28129849

RESUMEN

Adipose tissues (ATs) are lipid-rich structures that supply and sequester energy-dense lipid in response to the energy status of an organism. As such, ATs provide an organism energetic insurance during periods of adverse physiological burden. ATs are deposited in diverse anatomical locations, and excessive accumulation of particular regional ATs modulates disease risk. Therefore, a model system that facilitates the visualization and quantification of regional adiposity holds significant biomedical promise. The zebrafish (Danio rerio) has emerged as a new model system for AT research in which the entire complement of regional ATs can be imaged and quantified in live individuals. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for identifying and quantifying regional zebrafish ATs.


Asunto(s)
Tejido Adiposo Blanco/diagnóstico por imagen , Lípidos/aislamiento & purificación , Imagen Molecular/métodos , Obesidad/diagnóstico por imagen , Adipocitos/ultraestructura , Adiposidad/fisiología , Animales , Obesidad/patología , Pez Cebra
2.
Methods Cell Biol ; 138: 61-100, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28129860

RESUMEN

All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal-microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research.


Asunto(s)
Vida Libre de Gérmenes , Microbiota/genética , Pez Cebra/crecimiento & desarrollo , Animales , Evolución Biológica , Mamíferos/microbiología , Pez Cebra/microbiología
3.
Development ; 128(11): 1943-9, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11493518

RESUMEN

Embryonic neural crest-derived melanocytes and their precursors express the kit receptor tyrosine kinase and require its function for their migration and survival. However, mutations in kit also cause deficits in melanocytes that make up adult pigment patterns, including melanocytes that re-establish the zebrafish fin stripes during regeneration. As adult melanocytes in mice and zebrafish are generated and maintained by stem cell populations that are presumably established during embryonic development, it has been proposed that adult phenotypes in kit mutants result from embryonic requirements for kit. We have used a temperature-sensitive zebrafish kit mutation to show that kit is required during adult fin regeneration to promote melanocyte differentiation, rather than during embryonic stages to establish their stem cell precursors. We also demonstrate a transient role for kit in promoting the survival of newly differentiated regeneration melanocytes.


Asunto(s)
Melanocitos/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Diferenciación Celular , División Celular , Supervivencia Celular , Mutagénesis , Proteínas Proto-Oncogénicas c-kit/genética , Temperatura , Pez Cebra
4.
Dev Biol ; 240(2): 301-14, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11784065

RESUMEN

The study of vertebrate pigment patterns is a classic and enduring field of developmental biology. Knowledge of pigment pattern development comes from a variety of systems, including avians, mouse, and more recently, the zebrafish (Danio rerio). Recent analyses of the mechanisms underlying the development of the neural crest-derived pigment cell type common to all vertebrates, the melanocyte, have revealed remarkable similarities and several surprising differences between amniotes and zebrafish. Here, we summarize recent advances in the study of melanocyte development in zebrafish, with reference to human, mouse, and avian systems. We first review melanocyte development in zebrafish and mammals, followed by a summary of the molecules known to be required for their development. We then discuss several relatively unaddressed issues in vertebrate pigment pattern development that are being investigated in zebrafish. These include determining the relationships between genetically distinct classes of melanocytes, characterizing and dissecting melanocyte stem cell development, and understanding how pigment cells organize into a patterned tissue. Further analysis of zebrafish pigment pattern mutants as well as new generations of directed mutant screens promise to extend our understanding of pigment pattern morphogenesis.


Asunto(s)
Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Melanocitos/citología , Ratones , Factor de Transcripción Asociado a Microftalmía , Modelos Biológicos , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-kit/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptores de Endotelina/genética , Factores de Transcripción SOXE , Transducción de Señal , Pigmentación de la Piel/genética , Factor de Células Madre/genética , Células Madre/citología , Proteínas Wnt , Pez Cebra/genética
5.
Dev Biol ; 227(2): 294-306, 2000 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11071756

RESUMEN

Pigment patterns of fishes are a tractable system for studying the genetic and cellular bases for postembryonic phenotypes. In the zebrafish Danio rerio, neural crest-derived pigment cells generate different pigment patterns during different phases of the life cycle. Whereas early larvae exhibit simple stripes of melanocytes and silver iridophores in a background of yellow xanthophores, this pigment pattern is transformed at metamorphosis into that of the adult, comprising a series of dark melanocyte and iridophore stripes, alternating with light stripes of iridophores and xanthophores. Although several genes have been identified in D. rerio that contribute to the development of both early larval and adult pigment patterns, comparatively little is known about genes that are essential for pattern formation during just one or the other life cycle phase. In this study, we identify the gene responsible for the rose mutant phenotype in D. rerio. rose mutants have wild-type early larval pigment patterns, but fail to develop normal numbers of melanocytes and iridophores during pigment pattern metamorphosis and exhibit a disrupted pattern of these cells. We show that rose corresponds to endothelin receptor b1 (ednrb1), an orthologue of amniote Ednrb genes that have long been studied for their roles in neural crest and pigment cell development. Furthermore, we demonstrate that D. rerio ednrb1 is expressed both during pigment pattern metamorphosis and during embryogenesis, and cells of melanocyte, iridophore, and xanthophore lineages all express this gene. These analyses suggest a phylogenetic conservation of roles for Ednrb signaling in the development of amniote and teleost pigment cell precursors. As murine Ednrb is essential for the development of all neural crest derived melanocytes, and D. rerio ednrb1 is required only by a subset of adult melanocytes and iridophores, these analyses also reveal variation among vertebrates in the cellular requirements for Ednrb signaling, and suggest alternative models for the cellular and genetic bases of pigment pattern metamorphosis in D. rerio.


Asunto(s)
Mutación , Cresta Neural/metabolismo , Pigmentación/genética , Receptores de Endotelina/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Análisis Mutacional de ADN , Endotelina-1/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Melanocitos/citología , Melanocitos/metabolismo , Metamorfosis Biológica/genética , Cresta Neural/citología , Fenotipo , Receptor de Endotelina B , Pez Cebra/embriología
6.
Development ; 127(17): 3715-24, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10934016

RESUMEN

Fin regeneration in adult zebrafish is accompanied by re-establishment of the pigment stripes. To understand the mechanisms underlying fin stripe regeneration and regulation of normal melanocyte stripe morphology, we investigated the origins of melanocytes in the regenerating fin and their requirement for the kit receptor tyrosine kinase. Using pre-existing melanin as a lineage tracer, we show that most fin regeneration melanocytes develop from undifferentiated precursors, rather than from differentiated melanocytes. Mutational analysis reveals two distinct classes of regeneration melanocytes. First, an early regeneration class develops dependent on kit function. In the absence of kit function and kit-dependent melanocytes, a second class of melanocytes develops at later stages of regeneration. This late kit-independent class of regeneration melanocytes has little or no role in wild-type fin stripe development, thus revealing a secondary mode for regulation of fin stripes. Expression of melanocyte markers in regenerating kit mutant fins suggests that kit normally acts after mitf and before dct to promote development of the primary kit-dependent melanocytes. kit-dependent and kit-independent melanocytes are also present during fin stripe ontogeny in patterns similar to those observed during regeneration.


Asunto(s)
Melanocitos/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células Madre/fisiología , Animales , Diferenciación Celular , Melanocitos/citología , Melanocitos/metabolismo , Mutagénesis , Pigmentación , Proteínas Proto-Oncogénicas c-kit/genética , Regeneración , Células Madre/citología , Células Madre/metabolismo , Pez Cebra/metabolismo , Pez Cebra/fisiología
7.
Development ; 126(15): 3425-36, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10393121

RESUMEN

The relative roles of the Kit receptor in promoting the migration and survival of amniote melanocytes are unresolved. We show that, in the zebrafish, Danio rerio, the pigment pattern mutation sparse corresponds to an orthologue of c-kit. This finding allows us to further elucidate morphogenetic roles for this c-kit-related gene in melanocyte morphogenesis. Our analyses of zebrafish melanocyte development demonstrate that the c-kit orthologue identified in this study is required both for normal migration and for survival of embryonic melanocytes. We also find that, in contrast to mouse, the zebrafish c-kit gene that we have identified is not essential for hematopoiesis or primordial germ cell development. These unexpected differences may reflect evolutionary divergence in c-kit functions following gene duplication events in teleosts.


Asunto(s)
Melanocitos/citología , Proteínas Proto-Oncogénicas c-kit/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Evolución Biológica , Cartilla de ADN/genética , ADN Complementario/genética , Femenino , Células Germinativas/crecimiento & desarrollo , Hematopoyesis/genética , Masculino , Ratones , Cresta Neural/citología , Filogenia , Especificidad de la Especie
8.
J Cell Biol ; 142(5): 1325-35, 1998 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-9732292

RESUMEN

G protein-coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein-coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2(-) strains, and causes a multiple-tip phenotype in a cAR2(+) strain as well as leading to the production of extremely small cells in suspension culture. SCAR-cells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.


Asunto(s)
Dictyostelium/crecimiento & desarrollo , Proteínas de Unión al GTP/fisiología , Proteínas/química , Proteínas Protozoarias , Secuencia de Aminoácidos , Animales , Movimiento Celular/genética , Tamaño de la Célula/genética , Clonación Molecular , Proteínas Fúngicas/química , Marcación de Gen , Inmunohistoquímica , Datos de Secuencia Molecular , Fenotipo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducción de Señal/fisiología , Supresión Genética/genética , Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA