Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 513: 505-514, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29179091

RESUMEN

Luminescent nanomaterials are encouraging scaffolds for diverse applications such as chemical sensors and biosensors, imaging, drug delivery, diagnostics, catalysis, energy, photonics, medicine, and so on. Carbon dots (CDs) are a new class of luminescent carbonaceous nanomaterial that have appeared recently and reaped tremendous scientific interest. Herein, we have exploited a simple approach to prepare tuneable and highly fluorescent CDs via surface functionalization. The successful synthesis of CDs is manifested from several investigations like high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The CDs exhibit excellent water solubility and with increasing nitrogen content fluorescence quantum yield increases whereas cell toxicity decreases. The CD synthesized at high temperature (180 °C) shows very high quantum yield (more than 56%). The tuneable optical properties of CDs are systematically studied using UV-vis and fluorescence spectroscopy. The cell viability evaluation and in vitro imaging study reveals that the synthesized CDs can be employed as a potential fluorescent probe for bio-imaging without further modification.


Asunto(s)
Carbono/química , Fluorescencia , Colorantes Fluorescentes/química , Glioblastoma/patología , Imagen Molecular/métodos , Nanoestructuras/química , Puntos Cuánticos , Animales , Técnicas Biosensibles , Proliferación Celular , Humanos , Ratones , Células 3T3 NIH , Células Tumorales Cultivadas
2.
ACS Appl Mater Interfaces ; 9(43): 37739-37749, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29019248

RESUMEN

The development of economical, proficient, and highly stable catalysts to substitute the expensive noble metal electrodes for electrocatalytic water-splitting applications is exceedingly desirable. In this context, the most fascinating and challenging approach is the rational design of a nanocomposite encompassing multiple components with unique functionalities. Herein, we describe the fabrication of a strongly catalytic and superb durable phosphorus-incorporated cobalt molybdenum sulfide electrocatalyst grown on carbon cloth (P-CoMoS/CC). The hybrid material exhibited excellent activity for hydrogen and oxygen evolution reactions over a wide range of pH (1-14) with extremely high stability (∼90% retention of the initial current density) after 24 h of electrolysis. Importantly, when P-CoMoS/CC was used as both cathode and anode for overall water splitting, a very low cell voltage of 1.54 V is required to attain the 10 mA cm-2 current density, and the hybrid material exhibited a long-term stability (89.8% activity retention after 100 h). The outstanding overall water-splitting performance compared to an electrolyzer consisting of the noble-metal-based catalysts Pt/C and RuO2 makes P-CoMoS one of the most efficient earth-abundant water-splitting catalysts. Phosphorus incorporation was proved to be a vital aspect for the improved charge-transfer properties and catalytic durability of the P-CoMoS/CC catalyst.

3.
ACS Appl Mater Interfaces ; 9(9): 8134-8141, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28211670

RESUMEN

Cost-effective, highly active water oxidation catalysts are increasingly being demanded in the field of energy conversion and storage. Herein, a simple modified hydrothermally (MHT) synthesized zinc and cobalt based hydroxyl double salt, that is, Zn4-xCoxSO4(OH)6·0.5H2O (ZCS), has been exfoliated for the first time as an efficient electrocatalyst for oxygen evolution reaction (OER) in alkaline medium. Morphology investigation suggests the evolution of unique hexagonal nanoplates of ZCS material. As OER catalyst, it requires only 370 and 450 mV overpotential to achieve 10 and 100 mA cm-2 current density, respectively. More importantly, performance at the overpotential over 400 mV and durability of the designed material have been found to be superior to those of commercial RuO2 catalyst. In the designed ZCS material trace amounts of cobalt species lead to higher mass activity of 146 A g-1, compared to that of the RuO2 catalyst (83 A g-1) at the same overpotential of 370 mV. The outstanding activity and stability of the cost-effective material emerges from the promotional effect of Zn ions, which are present as the principal constituent in the electrocatalyst, and they also protect the cobalt ions in the matrix during its long-term electrochemical test. It is important to note that an appropriate ratio of zinc and cobalt ions synergistically helps to create an economically viable and environmentally suitable electrocatalyst in comparison to other related transition metal based materials.

4.
Chemistry ; 22(29): 10017-27, 2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27294801

RESUMEN

Herein, the effect of diverse metal bromides for the shape evolution of palladium nanostructures (Pd NS) has been demonstrated. Aromaticity-driven reduction of bromopalladate(II) is optimized to reproducibly obtain different Pd NS at the water/organic layer interface. In this soft interfacial strategy, a redox potential driven reaction has been performed, forming the thermodynamically more stable (>10(4) -fold) PdBr4 (2-) precursor from PdCl4 (2-) by adding extra metal bromides. In the process, the reductant, Hantzsch dihydropyridine ester (DHPE), is aromatized. Interestingly, alkali metal bromides devoid of coordination propensity exclusively evolve Pd nanowires (Pd NWs), whereas in the case of transition metal bromides the metal ions engage the 'N' donor of DHPE at the interface, making the redox reaction sluggish. Hence, controlled Pd nanoparticles growth is observed, which evolves Pd broccolis (Pd NBRs) and Pd nanorods (Pd NRs) at the interface in the presence of NiBr2 and CuBr2 , respectively, in the aqueous solution. Thus, the effect of diverse metal bromides in the reaction mixture for tailor-made growth of the various Pd NS is reported. Among the as-synthesized materials, the Pd NWs stand to be superior catalysts and their efficiency is almost 6 and 2.5 times higher than commercial 20 % Pd/C in the electrooxidation of ethanol and Cr(VI) reduction reaction by formic acid, respectively.

5.
ACS Appl Mater Interfaces ; 8(28): 17987-98, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27348764

RESUMEN

Morphology of a material with different facet, edge, kink, etc., generally influences the rate of a catalytic reaction.1,2 Herein, we account for the importance of altered morphology of a nanomaterial for a supercapacitor device and employed CoSn(OH)6 as an electrode material. Suitable fabrication of a stable aqueous asymmetric supercapacitor (AAS) using metal hydroxide as positive electrode can be beneficial if the high energy density is derived without sacrificing the power density. Here we have synthesized an uncommon hierarchical mesoporous nanostructured (HNS) CoSn(OH)6 to fabricate a pseudocapacitor. In this endeavor, NH3 is found to be a well-suited hydrolyzing agent for the synthesis.3 Serendipitously, HNS was transformed into favored cubic nanostructure (CNS) in NaOH solution. In solution, NaOH acts as a structure directing as well as an etching agent. Both the samples (HNS & CNS) were used as pseudocapacitor electrodes in KOH electrolyte independently, which is reported for the first time. The HNS exhibits very high specific capacitance value (2545 F/g at 2.5 A/g specific current) with better cyclic durability over CNS sample (851 F/g at 2.5 A/g specific current). To examine the real cell application, we used HNS sample as the positive electrode material with the activated carbon (AC) as the negative electrode material for the development of an aqueous asymmetric supercapacitor (AAS). The as-fabricated AAS exhibited very high specific capacitance value of 713 F/g at a specific current of 1.5 A/g and retained 92% specific capacitance value even after 10 000 charge-discharge cycles. A maximum energy density of 63.5 Wh kg(-1) and a maximum power density of 5277 W kg(-1) were ascertained from the as-fabricated AAS, HNS CoSn(OH)6//AC.

6.
Chem Commun (Camb) ; 52(36): 6095-8, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27067117

RESUMEN

Herein, a Mn3O4 nanooctahedron (NO) supported Pd nanocomposite has been fabricated from a chosen thermodynamically allowed redox transformation reaction. The synthesized Pd-Mn3O4 (PMO) nanocomposite exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction (HER) in acidic medium with a low overpotential (14 mV), small Tafel slope (42 mV dec(-1)) and high exchange current density (7.74 mA cm(-2)). Moreover, the exceptional durability displayed by PMO on conducting 5000 CV cycles as well as its long-term stability for 36 h (97% activity retention) deserve special attention.

7.
Chem Asian J ; 11(10): 1588-96, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27016895

RESUMEN

Inspired by the attractive catalytic properties of palladium and the inert nature of carbon supports in catalysis, a concise and simple methodology for in situ nitrogen-doped mesoporous-carbon-supported palladium nanoparticles (Pd/N-C) has been developed by carbonizing a palladium dimethylglyoximate complex. The as-synthesized Pd/N-C has been exfoliated as a fuel cell catalyst by studying the electro-oxidation of methanol and formic acid. The material synthesized at 400 °C,namely, Pd/N-C-400,exhibitssuperior mass activity and stability among catalysts synthesized under different carbonization temperaturesbetween300 and 500 °C. The unique 1D porous structure in Pd/N-C-400 helps better electron transport at the electrode surface, which eventually leads to about five times better catalytic activity and about two times higher stability than that of commercial Pd/C. Thus, our designed sacrificial metal-organic templatedirected pathway becomes a promising technique for Pd/N-C synthesis with superior catalytic performances.


Asunto(s)
Formiatos/química , Metanol/química , Nanopartículas/química , Paladio/química , Carbono/química , Catálisis , Complejos de Coordinación/química , Técnicas Electroquímicas , Nitrógeno/química , Oxidación-Reducción , Oximas/química , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Porosidad
8.
Dalton Trans ; 45(11): 4780-90, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26865315

RESUMEN

Uniform hierarchical Bi2O3/MnO2 nanoflowers (BM NFs) are fabricated via a reaction strategy by combining redox reaction and hydrothermal treatment. This wet chemical method reports for the first time a one pot synthesis of Bi2O3/MnO2 nanoflowers via a thermodynamically allowed galvanic reaction between Bi(0) and KMnO4 in aqueous solution under modified hydrothermal (MHT) conditions. The Bi2O3/MnO2 NF composites are then applied as a catalyst for electrochemical hydrogen peroxide detection. Exceedingly high H2O2 detection sensitivity (0.914 µA µM(-1) cm(-2)) lies in a wide linear range of 0.2-290 µM and the detection limit goes down to 0.05 µM (S/N = 3) for non-enzymatic detection of H2O2 in solution. This prototype sensor demonstrates an admirable analytical performance considering its long-term stability, good reproducibility and acceptable selectivity against common interfering species. The employment of the stable nanocomposite for real sample analysis makes it a deliverable for H2O2 sensing.

9.
Chem Commun (Camb) ; 51(88): 15986-9, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26382213

RESUMEN

Ultrathin 2D Co3O4 and Co3V2O8 nanosheets have been produced from our modified hydrothermal technique (MHT). Both the materials have been proved to be extraordinary electrode materials for pseudocapacitors. The neat nanosheets of Co3O4 and Co3V2O8 exhibit a record specific capacitance value of 1256 F g(-1) and 4194 F g(-1) at 1 A g(-1) current density, respectively.

10.
Chem Asian J ; 10(7): 1571-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25865028

RESUMEN

A logically chosen redox reaction of submerged Fe(0) in an aqueous KMnO4 solution has been reported. The template-free reaction conditions produced gram amounts of a hierarchical flowerlike Fe3O4-MnO2 nanocomposite. More precisely, freshly prepared Fe(0) nanoparticles were prepared from air-free hot water under submerged conditions using a door magnet. The black Fe(0) particles were oxidized in water quantitatively by KMnO4 in the solution phase and the nanocomposite was prepared. The material has been used as a dye adsorbent and the representative cationic dye uptake, recovery, and recycling of the dye becomes easy owing to the ferromagnetic properties and surface negative charge of the material. The nanocomposite also showed a higher specific capacitance (327 F g(-1) at 10 mV s(-1)) than the reported values of pure MnO2 and Fe3O4. The material exhibited a high energy density as well as a high power density, and remained stable even after a large number of charge-discharge cycles.

11.
Dalton Trans ; 44(1): 193-201, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25369862

RESUMEN

We report an environmentally friendly synthetic strategy to fabricate reduced graphene oxide (rGO)-based ternary nanocomposites, in which glutathione (GSH) acts both as a reducing agent for graphene oxide and sulfur donor for CdS synthesis under modified hydrothermal (MHT) conditions. The report becomes interesting as pH variation evolves two distinctly different semiconducting nanocrystals of anatase/rutile TiO2 and hexagonal yellow/cubic red CdS, and their packaging makes them suitable photocatalysts for dye degradation. Herein, a titanium peroxo compound, obtained from commercial TiO2, is hydrolyzed to TiO2 nanostructures without any additives. The yellow colored CdS-TiO2-rGO (YCTG), one of the ternary photocatalysts, shows maximum efficiency compared to the corresponding red ternary CdS-TiO2-rGO or binary photocatalysts (CdS-rGO, TiO2-rGO and CdS-TiO2) for dye degradation under visible light irradiation. Systematic characterizations reveal that TiO2 presents at the interface of rGO and CdS in YCTG and thus makes a barrier that inhibits the direct interaction between rGO and CdS. This leads to a relatively higher bandgap value for CdS in YCTG (2.15 eV vs. 2.04 eV for CdS-rGO) but with better photocatalytic activity simply by diminishing the possibility of the charge-recombination process. In the present situation, rGO in the YCTG also supports faster dye degradation through higher dye adsorption and rapid internal electron transfer (CdS→TiO2→rGO) in the YCTG nanocomposite. Thus, a simple aqueous phase and a greener synthetic procedure results in a low-cost, highly effective visible light-responsive material for environmental application.


Asunto(s)
Compuestos de Cadmio/química , Glutatión/química , Grafito/química , Nanocompuestos/química , Óxidos/química , Sulfuros/química , Titanio/química , Catálisis , Colorantes/química , Conductividad Eléctrica , Luz , Modelos Moleculares , Nanocompuestos/ultraestructura , Oxidación-Reducción , Fotólisis , Sustancias Reductoras/química
12.
ACS Appl Mater Interfaces ; 6(12): 9134-43, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24873275

RESUMEN

The importance of an interfacial reaction to obtain mesoporous leafy nanostructures of gold and palladium has been reported. A new synthetic strategy involving 1,4-dihydropyridine ester (DHPE) as a potential reducing agent performs exceptionally well for the desired morphologies of both the noble metals at room temperature. The DHPE in turn transforms into its oxidized aromatic form. The as-synthesized gold leaves exhibit high surface-enhanced Raman scattering activity with rhodamine 6G (R6G) due to their hyperbranched structure. It is worthwhile that as-synthesized porous architectures of palladium support the room-temperature hydrogenation of 4-nitrophenol (4-NP) by hydrazine hydrate (N2H4·H2O), reported for the first time. Furthermore, MPL exhibits exceptionally good catalytic activity toward electrooxidation of formic acid. Therefore, an aromaticity driven synthetic technique achieves a rationale to design leafy nanostructures of noble metals from the liquid-liquid interface for multifaceted applications.

13.
Dalton Trans ; 43(18): 6677-83, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24626596

RESUMEN

The befitting capping capabilities of AsO4(3-) provide a stable Cu2O nanocatalyst from a galvanic reaction between a Cu(II) precursor salt and As(0) nanoparticles. This stable Cu2O hydrosol appears to be a suitable catalyst for the one-electron transfer reversible redox reaction between Eosin Y and NaBH4. The progress of the reaction relates to three different kinetic stages. In the presence of the new catalyst the reversible redox reaction of Eosin Y in air shows a periodic color change providing a new crowd-pleasing demonstration, i.e. a "clock reaction".

14.
J Mater Chem B ; 2(36): 6097-6105, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261862

RESUMEN

Mesoporous nickel oxide nanoflowers (NiO NFs) can be easily synthesized by a two-step synthetic procedure based on modified hydrothermal (MHT) treatment of nickel acetate and ethanol amine in water followed by thermal decomposition at 350 °C for 4 h. After thermal treatment, the porosity is increased by 18% with retention of parental nickel hydroxide size. In this study, for the first time, a new catalytic application of NiO NFs has been revealed in terms of peroxidase-like activity where colorless 3,3',5,5' tetramethylbenzidine (TMB) is oxidized to blue color product in the presence of H2O2 at room temperature. Comparative study confirms that mesoporous NiO NFs exhibit superior catalytic activity to the parent analogues, i.e. Ni(OH)2 or bulk NiO. This intrinsic peroxidase-like activity from an easily synthesized inorganic nanomaterial provides an alternative to horseradish peroxidase (HRP) enzyme. The lower Michaelis constant (Km) value indicates that the catalyst NiO NFs bind efficiently to the test substrate, i.e. TMB. Interestingly, the NiO NFs-catalyzed TMB oxidation, i.e. blue color formation, has been found to be selectively and successively inhibited by a variable amount of cysteine among a set of 21 congeners. Thus our adopted simple, low-cost and novel colorimetric assay stands to be a highly efficient approach for selective detection of cysteine with a limit of detection (LOD) value of ∼1.1 µM using a simple UV-vis spectrophotometer. The proposed method also exhibits outstanding selectivity and accuracy for N-acetyl cysteine (an analogue of cysteine) estimation in real pharmaceutical samples.

15.
ACS Appl Mater Interfaces ; 5(17): 8724-32, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23947790

RESUMEN

Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.


Asunto(s)
Grafito/química , Nanoestructuras/química , Plata/química , Espectrometría Raman , Compuestos de Uranio/análisis , Dimetilformamida/química , Concentración de Iones de Hidrógeno , Iones/química , Nanopartículas del Metal/química , Oxidación-Reducción , Óxidos/química , Povidona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...