Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Neuron ; 108(1): 145-163.e10, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32916090

RESUMEN

Neural representations of head direction (HD) have been discovered in many species. Theoretical work has proposed that the dynamics associated with these representations are generated, maintained, and updated by recurrent network structures called ring attractors. We evaluated this theorized structure-function relationship by performing electron-microscopy-based circuit reconstruction and RNA profiling of identified cell types in the HD system of Drosophila melanogaster. We identified motifs that have been hypothesized to maintain the HD representation in darkness, update it when the animal turns, and tether it to visual cues. Functional studies provided support for the proposed roles of individual excitatory or inhibitory circuit elements in shaping activity. We also discovered recurrent connections between neuronal arbors with mixed pre- and postsynaptic specializations. Our results confirm that the Drosophila HD network contains the core components of a ring attractor while also revealing unpredicted structural features that might enhance the network's computational power.


Asunto(s)
Encéfalo/ultraestructura , Movimientos de la Cabeza , Red Nerviosa/ultraestructura , Neuronas/ultraestructura , Navegación Espacial , Sinapsis/ultraestructura , Animales , Drosophila melanogaster , Microscopía Confocal , Microscopía Electrónica , Microscopía de Fluorescencia por Excitación Multifotónica , Vías Nerviosas , Vías Visuales
4.
Elife ; 82019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31724947

RESUMEN

Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Memoria/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Animales , Dopamina/farmacología , Proteínas de Drosophila , Drosophila melanogaster/fisiología , Aprendizaje/fisiología , Cuerpos Pedunculados/fisiología , Neurotransmisores/metabolismo , Odorantes , Olfato/fisiología
5.
Dev Cell ; 46(1): 23-39.e5, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29974861

RESUMEN

Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.


Asunto(s)
Tipificación del Cuerpo/fisiología , Drosophila melanogaster/embriología , Células Epiteliales/citología , Extremidad Inferior/embriología , Morfogénesis/fisiología , Alas de Animales/embriología , Animales , Polaridad Celular/fisiología , Forma de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/embriología , Epitelio/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Miosina Tipo II/metabolismo , Serina Endopeptidasas/metabolismo
6.
Nat Commun ; 7: 10851, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26926954

RESUMEN

Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Envejecimiento , Animales , Fenómenos Biomecánicos , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica/fisiología , Genotipo , Masculino , Análisis de Componente Principal
7.
Dev Cell ; 34(3): 310-22, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26190146

RESUMEN

How tissues acquire their characteristic shape is a fundamental unresolved question in biology. While genes have been characterized that control local mechanical forces to elongate epithelial tissues, genes controlling global forces in epithelia have yet to be identified. Here, we describe a genetic pathway that shapes appendages in Drosophila by defining the pattern of global tensile forces in the tissue. In the appendages, shape arises from tension generated by cell constriction and localized anchorage of the epithelium to the cuticle via the apical extracellular-matrix protein Dumpy (Dp). Altering Dp expression in the developing wing results in predictable changes in wing shape that can be simulated by a computational model that incorporates only tissue contraction and localized anchorage. Three other wing shape genes, narrow, tapered, and lanceolate, encode components of a pathway that modulates Dp distribution in the wing to refine the global force pattern and thus wing shape.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Epitelio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Alas de Animales/embriología , Animales , Adhesión Celular , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética
9.
J Biol Chem ; 287(8): 5942-53, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22199351

RESUMEN

Bone morphogenetic proteins (BMPs) are synthesized as proproteins that undergo proteolytic processing by furin/subtilisin proprotein convertases to release the active ligand. Here we study processing of BMP5/6/7/8 proteins, including the Drosophila orthologs Glass Bottom Boat (Gbb) and Screw (Scw) and human BMP7. Gbb and Scw have three functional furin/subtilisin proprotein convertase cleavage sites; two between the prodomain and ligand domain, which we call the Main and Shadow sites, and one within the prodomain, which we call the Pro site. In Gbb each site can be cleaved independently, although efficient cleavage at the Shadow site requires cleavage at the Main site, and remarkably, none of the sites is essential for Gbb function. Rather, Gbb must be processed at either the Pro or Main site to produce a functional ligand. Like Gbb, the Pro and Main sites in Scw can be cleaved independently, but cleavage at the Shadow site is dependent on cleavage at the Main site. However, both Pro and Main sites are essential for Scw function. Thus, Gbb and Scw have different processing requirements. The BMP7 ligand rescues gbb mutants in Drosophila, but full-length BMP7 cannot, showing that functional differences in the prodomain limit the BMP7 activity in flies. Furthermore, unlike Gbb, cleavage-resistant BMP7, although non-functional in rescue assays, activates the downstream signaling cascade and thus retains some functionality. Our data show that cleavage requirements evolve rapidly, supporting the notion that changes in post-translational processing are used to create functional diversity between BMPs within and between species.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteolisis , Factor de Crecimiento Transformador beta/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Morfogenética Ósea 5/química , Proteína Morfogenética Ósea 5/metabolismo , Proteína Morfogenética Ósea 6/química , Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/metabolismo , Proteínas Morfogenéticas Óseas/química , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Evolución Molecular , Humanos , Ligandos , Datos de Secuencia Molecular , Mutación , Proproteína Convertasas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/genética
10.
Dev Genes Evol ; 220(9-10): 235-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21086136

RESUMEN

Gene duplication and divergence is widely considered to be a fundamental mechanism for generating evolutionary novelties. The Bone Morphogenetic Proteins (BMPs) are a diverse family of signalling molecules found in all metazoan genomes that have evolved by duplication and divergence from a small number of ancestral types. In the fruit fly Drosophila, there are three BMPs: Decapentaplegic (Dpp) and Glass bottom boat (Gbb), which are the orthologues of vertebrate BMP2/4 and BMP5/6/7/8, respectively, and Screw (Scw), which, at the sequence level, is equally divergent from Dpp and Gbb. It has recently been shown that Scw has arisen from a duplication of Gbb in the lineage leading to higher Diptera. We show that since this duplication event, Gbb has maintained the ancestral BMP5/6/7/8 functionality while Scw has rapidly diverged. The evolution of Scw was accompanied by duplication and divergence of a suite of extracellular regulators that continue to diverge together in the higher Diptera. In addition, Scw has become restricted in its receptor specificity: Gbb proteins can signal through the Type I receptors Thick veins (Tkv) and Saxophone (Sax), while Scw signals through Sax. Thus, in a relatively short span of evolutionary time, the duplication event that gave rise to Scw produced not only a novel ligand but also a novel signalling mode that is functionally distinct from the ancestral Gbb mode. Our results demonstrate the plasticity of the BMP pathway not only in evolving new family members and new functions but also new signalling modes by redeploying key regulators in the pathway.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Duplicación de Gen , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Insectos/genética , Insectos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética
11.
Dev Cell ; 16(1): 83-92, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19154720

RESUMEN

Dystroglycan localizes to the basal domain of epithelial cells and has been reported to play a role in apical-basal polarity. Here, we show that Dystroglycan null mutant follicle cells have normal apical-basal polarity, but lose the planar polarity of their basal actin stress fibers, a phenotype it shares with Dystrophin mutants. However, unlike Dystrophin mutants, mutants in Dystroglycan or in its extracellular matrix ligand Perlecan lose polarity under energetic stress. The maintenance of epithelial polarity under energetic stress requires the activation of Myosin II by the cellular energy sensor AMPK. Starved Dystroglycan or Perlecan null cells activate AMPK normally, but do not activate Myosin II. Thus, Perlecan signaling through Dystroglycan may determine where Myosin II can be activated by AMPK, thereby providing the basal polarity cue for the low-energy epithelial polarity pathway. Since Dystroglycan is often downregulated in tumors, loss of this pathway may play a role in cancer progression.


Asunto(s)
Polaridad Celular/fisiología , Distroglicanos/metabolismo , Células Epiteliales , Proteoglicanos de Heparán Sulfato/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Distroglicanos/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Proteoglicanos de Heparán Sulfato/genética , Humanos , Masculino , Miosina Tipo II/metabolismo , Oocitos/citología , Oocitos/fisiología , Folículo Ovárico/citología , Folículo Ovárico/metabolismo , Fenotipo , Fibras de Estrés/metabolismo
12.
Dev Biol ; 313(2): 519-32, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18093579

RESUMEN

Dystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila 'crossveinless' mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det. Null mutations in Drosophila Dystroglycan (Dg) are similarly viable and exhibit this crossvein defect, indicating that both of the central DAPC components have been co-opted for this atypical function of the complex. In the developing wing, the Drosophila DAPC affects the intercellular signalling pathways involved in vein specification. In det and Dg mutant wings, the early BMP signalling that initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to the longitudinal veins, and this results in the production of a crossvein fragment in the intervein between the two longitudinal veins. Genetic interaction studies suggest that the DAPC may exert this effect indirectly by down-regulating Notch signalling in pro-vein territories, leading to enhanced BMP signalling in the intervein by diffusion of BMP ligands from the longitudinal veins.


Asunto(s)
Drosophila/genética , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Distrofina/genética , Genes de Insecto , Transducción de Señal , Alas de Animales/embriología , Alelos , Animales , Mapeo Cromosómico , Drosophila/embriología , Distroglicanos/genética , Distroglicanos/fisiología , Distrofina/metabolismo , Complejo de Proteínas Asociado a la Distrofina/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Modelos Biológicos , Mutación , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo , beta-Galactosidasa/metabolismo
13.
Genesis ; 42(3): 181-92, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15986479

RESUMEN

In mammals, the Transforming Growth Factor-beta (TGF-beta) superfamily controls a variety of developmental processes. In Drosophila, by contrast, a single member of the superfamily, decapentaplegic (dpp) performs most TGF-beta developmental functions. The complexity of dpp functions is reflected in the complex cis-regulatory sequences that flank the gene. Dpp is divided into three regions: Hin, including the protein-coding exons; disk, including 3' cis-regulatory sequences; and shortvein (shv), including noncoding exons and 5' cis-regulatory sequences. We analyzed the cis-regulatory structure of the shortvein region using a nested series of rearrangement breakpoints and rescue constructs. We delimit the molecular regions responsible for three mutant phenotypes: larval lethality, wing venation defects, and head capsule defects. Multiple overlapping elements are responsible for larval lethality and wing venation defects. However, the area regulating head capsule formation is distinct, and resides 5' to these elements. We have demonstrated this by isolating and describing two novel dpp alleles, which affect only the adult head capsule.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Animales , Rotura Cromosómica/genética , Daño del ADN/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Cabeza/anomalías , Cabeza/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Mutación/genética , Fenotipo , Alas de Animales/anomalías , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
14.
Development ; 132(10): 2389-400, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15843408

RESUMEN

Members of the Rho family of small GTPases are required for many of the morphogenetic processes required to shape the animal body. The activity of this family is regulated in part by a class of proteins known as RhoGTPase Activating Proteins (RhoGAPs) that catalyse the conversion of RhoGTPases to their inactive state. In our search for genes that regulate Drosophila morphogenesis, we have isolated several lethal alleles of crossveinless-c (cv-c). Molecular characterisation reveals that cv-c encodes the RhoGAP protein RhoGAP88C. During embryonic development, cv-c is expressed in tissues undergoing morphogenetic movements; phenotypic analysis of the mutants reveals defects in the morphogenesis of these tissues. Genetic interactions between cv-c and RhoGTPase mutants indicate that Rho1, Rac1 and Rac2 are substrates for Cv-c, and suggest that the substrate specificity might be regulated in a tissue-dependent manner. In the absence of cv-c activity, tubulogenesis in the renal or Malpighian tubules fails and they collapse into a cyst-like sack. Further analysis of the role of cv-c in the Malpighian tubules demonstrates that its activity is required to regulate the reorganisation of the actin cytoskeleton during the process of convergent extension. In addition, overexpression of cv-c in the developing tubules gives rise to actin-associated membrane extensions. Thus, Cv-c function is required in tissues actively undergoing morphogenesis, and we propose that its role is to regulate RhoGTPase activity to promote the coordinated organisation of the actin cytoskeleton, possibly by stabilising plasma membrane/actin cytoskeleton interactions.


Asunto(s)
Actinas/metabolismo , Alelos , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas Activadoras de GTPasa/metabolismo , Túbulos de Malpighi/embriología , Morfogénesis , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Proteínas Activadoras de GTPasa/genética , Componentes del Gen , Inmunohistoquímica , Datos de Secuencia Molecular , Mutagénesis , Polimorfismo de Nucleótido Simple , Especificidad por Sustrato , Alas de Animales/anatomía & histología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína RCA2 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...