Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 255: 155203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368664

RESUMEN

Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.


Asunto(s)
Ferroptosis , MicroARNs , Humanos , Ferroptosis/genética , ARN Circular/genética , Apoptosis , Muerte Celular
2.
Breast Cancer (Auckl) ; 17: 11782234231184378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434996

RESUMEN

Background: Over the last few decades, tremendous progress has been achieved in the early detection and treatment of breast cancer (BC). However, the prognosis remains unsatisfactory, and the underlying processes of carcinogenesis are still unclear. The purpose of this research was to find out the relationship between myocardial infarction-associated transcript (MIAT), FOXO3a, and miRNA29a-3p and evaluated the expression levels in patients compare with control and their potential as a noninvasive bioindicator in whole blood in BC. Methods: Whole blood and BC tissue are taken from patients before radiotherapy and chemotherapy. Total RNA was extracted from BC tissue and whole blood to synthesize complementary DNA (cDNA). The expression of MIAT, FOXO3a, and miRNA29a-3p was analyzed by the quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method and the sensitivity and specificity of them were determined by the receiver operating characteristic (ROC) curve. Bioinformatics analysis was used to understand the connections between MIAT, FOXO3a, and miRNA29a-3p in human BC to develop a ceRNA (competitive endogenous RNA) network. Results: We identified that in ductal carcinoma BC tissue and whole blood, MIAT and FOXO3a were more highly expressed, whereas miRNA29a-3p was lower compared with those in nontumor samples. There was a positive correlation between the expression levels of MIAT, FOXO3a, and miRNA29a-3p in BC tissues and whole blood. Our results also proposed miRNA29a-3p as a common target between MIAT and FOXO3a, and we showed them as a ceRNA network. Conclusions: This is the first study that indicates MIAT, FOXO3a, and miRNA29a-3p as a ceRNA network, and their expression was analyzed in both BC tissue and whole blood. As a preliminary assessment, our findings indicate that combined levels of MIAT, FOXO3a, and miR29a-3p may be considered as potential diagnostic bioindicator for BC.

3.
Cell Biochem Funct ; 41(2): 152-165, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36794573

RESUMEN

Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.


Asunto(s)
Macrófagos , Fagocitosis , Humanos , Macrófagos/metabolismo , Fagocitosis/fisiología , Inflamación/metabolismo , Transducción de Señal , Apoptosis
4.
Biomed Eng Lett ; 12(3): 317-329, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35892030

RESUMEN

Abstract: Breast cancer due to its high incidence and mortality is the second leading cause of death among females. On the other hand, nanoparticle-based drug delivery is one of the most promising approaches in cancer therapy, nowadays. Hence, margetuximab- and polyethylene glycol-conjugated PAMAM G4 dendrimers were efficiently synthesized for targeted delivery of quercetin (therapeutic agent) to MDA-MB-231 breast cancer cells. Synthesized nano-complexes were characterized using analytical devices such as FT-IR, TGA, DLS, Zeta potential analyzer, and TEM. The size less than 40 nm, - 18.8 mV surface charge, efficient drug loading capacity (21.48%), and controlled drug release (about 45% of drug release normal pH after 8 h) were determined for the nano-complex. In the biomedical test, the cell viability was obtained 14.67% at 24 h of post-treatment for 800 nM concentration, and IC50 was ascertained at 100 nM for the nano-complex. The expression of apoptotic Bax and Caspase9 genes was increased by more than eightfolds and more than fivefolds after treatment with an optimal concentration of nanocarrier. Also, more than threefolds of cell cycle arrest was observed at the optimal concentration synthetics, and 27.5% breast cancer cell apoptosis was detected after treatment with 100 nM nano-complex. These outputs have been indicating the potential capacity of synthesized nano-complex in inhibiting the growth of breast cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...