Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 232: 115415, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120975

RESUMEN

This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC50 of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.


Asunto(s)
Aurora Quinasa B , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Mitosis , Humanos , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Microsomas Hepáticos/metabolismo , Oxidación-Reducción
2.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696874

RESUMEN

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Ratones , Animales , Aurora Quinasa B , Fenotipo , Aurora Quinasa A/metabolismo
3.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413818

RESUMEN

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Asunto(s)
Compuestos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Mitosis , Aurora Quinasas , Fosforilación , Aurora Quinasa B
4.
ACS Med Chem Lett ; 13(7): 1091-1098, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859866

RESUMEN

We used mechanism-informed phenotypic screening to identify and optimize compounds that phenocopy the genetic depletion of the mitotic aurora kinase B (AURKB) kinase. After assaying nine aryl fused seven-membered lactam compounds, we identified a hit compound 6a that was subsequently optimized to five lead compounds with low nanomolar activity, represented by the lead compound 6v (19 nM). With excellent drug-like properties, these compounds reproduced the loss of function in phenotypes of AURKB and exhibited potent cytotoxic activities in various cancer cell lines. Collectively, these data support that seven-membered lactam-based analogs might be valuable for further development as a new type of antimitotic agents for the treatment of cancer.

5.
J Phys Chem Lett ; 12(4): 1162-1168, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480695

RESUMEN

"All in one" type luminogens, possessing combined properties related to optical, materials, and biological implications, are of urgent demand today, mainly because of the combined application potential of such probes. To the best of our knowledge, until now, an "all in one" type white light emitter together with stimuli-responsive behavior and highly efficient mitochondrial-tracking ability has not been reported yet. In this contribution, for the first time, we have investigated a pair of luminogens exhibiting white light emission (CIE coordinates: 0.35, 0.35 (DPAEOA) and 0.29, 0.33 (DPAPMI)) with temperature-induced mechanochromic features of a centrosymmetrically packed probe (space group P-1). Most importantly, despite being neutral, our designed probe DPAEOA can specifically illuminate mitochondria with the highest Pearson coefficient value (0.93), which is rare, as almost all the commercially developed mitotrackers are cationic fluorophores. Thus, this study will pave a new avenue for the design of next generation "all in one" type organic luminogens exhibiting potential applications in notable optical, materials, and biological fields.

6.
Chem Commun (Camb) ; 55(52): 7562-7565, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31190046

RESUMEN

Several new structurally diverse carbonyl functional group-based iodoantimonate organic-inorganic hybrid crystals are synthesized using an in situ formed oxonium cationic precursor. These crystals exhibit interesting optoelectronic properties consistent with DFT calculations. Charge transfer and photoluminescence quenching between these crystals and Au nanoparticulate films are examined for potential application interest.

7.
Chem Sci ; 9(14): 3592-3606, 2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-29780492

RESUMEN

Prediction of multi-stimuli responsive behavior in newly developed luminogens is an appealing yet challenging puzzle, since no concrete design strategy has been developed so far. In this article, we demonstrate a potent strategy to gain a deep understanding of the structure-property relationship to design multi-stimuli responsive mechanochromic materials. To achieve our goal, a variety of new isoindolinone core based charge transfer luminogens exhibiting aggregation-induced emission (AIE) have been prepared through C-H bond activation using a cost-effective ruthenium (Ru) metal catalyzed one-pot synthetic strategy. We have shown that slight tuning of the donor moiety is found to be highly effective in controlling molecular packing and metastable energy states in solid states, and thus, optical properties and multi-stimuli responsive behaviors. The flexibility and twisting of donor moieties afford a loosely bound 'herringbone' packing, enabling reversible transformation under multiple mechanical stimuli. The cyclized derivative of the donor exhibits a completely different packing mode (i.e., cross packing), and subsequently, does not give rise to mechanochromism. The Hirshfeld surface analysis from a single crystal infers that non-covalent interactions (specifically C-H···π and π···π) are extremely important to yield mechanochromism under external force. Correlating all solid-state behavior with the molecular structure, we conclude that the synergistic effect between the twisting and conformational flexibility of donor moieties along with numerous non-covalent interactions gives rise to multi-stimuli responsive behaviors. Finally, the newly designed molecules are found to be highly emissive in solution and potentially applicable in fluorescence thermometer construction, lighting up cells, acid-base sensors and rewritable devices.

8.
Chem Sci ; 8(5): 4130-4135, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155216

RESUMEN

A concise total synthesis of aristolactam alkaloids by a synergistic combination of C-H bond activation and dehydro-Diels-Alder reactions is described. To achieve the synthesis two new synthetic methodologies, namely the oxidative cyclization of benzamides with vinyl sulfone leading to 3-methyleneisoindolin-1-ones via a ruthenium-catalyzed C-H bond activation, and a dehydro-Diels-Alder reaction followed by the fluoride ion mediated desulfonylation of 3-methyleneisoindolin-1-ones with benzynes, were developed. The method presented allows the opportunity for the construction of all the rings of aristolactams from easily available starting materials.

9.
Chem Commun (Camb) ; 51(53): 10738-41, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051900

RESUMEN

The ruthenium-catalyzed ortho alkenylation of substituted aromatic and heteroaromatic nitriles with activated alkenes providing ortho alkenylated aromatic and heteroaromatic nitriles in a highly regio- and stereoselective manner is described.

10.
Org Lett ; 16(18): 4866-9, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25198054

RESUMEN

Aromatic nitriles underwent cyclization with activated alkenes in the presence of a ruthenium catalyst, AgSbF6, and Cu(OAc)2·H2O providing substituted 3-methyleneisoindolin-1-ones with high Z-stereoselectivity. The Z-stereoselectivity of the 3-methyleneisoindolin-1-one moiety was controlled by the intramolecular hydrogen bonding.

11.
Chem Commun (Camb) ; 49(54): 6060-2, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23722966

RESUMEN

The oxidative cyclization of aromatic and heteroaromatic nitriles with alkynes in the presence of a catalytic amount of [{RuCl2(p-cymene)}2], Cu(OAc)2·H2O and KPF6 in acetic acid under air gave isoquinolones in good to excellent yields.


Asunto(s)
Alquinos/química , Nitrilos/química , Quinolonas/química , Rutenio/química , Catálisis , Cobre/química , Ciclización , Oxidación-Reducción , Estereoisomerismo
12.
Chem Commun (Camb) ; 49(5): 481-3, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23192381

RESUMEN

Chelation-assisted alkenylation of ortho C-H bond of aryl carbamates with alkynes in the presence of a ruthenium catalyst, AgSbF(6) and pivalic acid gives highly substituted alkene derivatives in good to excellent yields in a highly regio- and stereoselective manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...