Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(5): 106732, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216102

RESUMEN

Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.

2.
Commun Biol ; 4(1): 1342, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848815

RESUMEN

Myotonic Dystrophy Type I (DM1) patients demonstrate widespread and variable brain structural alterations whose etiology is unclear. We demonstrate that inactivation of the Muscleblind-like proteins, Mbnl1 and Mbnl2, initiates brain structural defects. 2D FSE T2w MRIs on 4-month-old Mbnl1+/-/Mbnl2-/- mice demonstrate whole-brain volume reductions, ventriculomegaly and regional gray and white matter volume reductions. Comparative MRIs on 2-month-old Mbnl1-/-, Mbnl2-/- and Mbnl1-/-/Mbnl2+/- brains show genotype-specific reductions in white and gray matter volumes. In both cohorts, white matter volume reductions predominate, with Mbnl2 loss leading to more widespread alterations than Mbnl1 loss. Hippocampal volumes are susceptible to changes in either Mbnl1 or Mbnl2 levels, where both single gene and dual depletions result in comparable volume losses. In contrast, the cortex, inter/midbrain, cerebellum and hindbrain regions show both gene and dose-specific volume decreases. Our results provide a molecular explanation for phenotype intensification in congenital DM1 and the variability in the brain structural alterations reported in DM1.


Asunto(s)
Encéfalo/patología , Proteínas de Unión al ADN/genética , Genotipo , Proteínas de Unión al ARN/genética , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Ratones , Proteínas de Unión al ARN/metabolismo
3.
Mol Cell Biol ; 37(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27849570

RESUMEN

The Werner syndrome protein (WRN) suppresses the loss of telomeres replicated by lagging-strand synthesis by a yet to be defined mechanism. Here, we show that whereas either WRN or the Bloom syndrome helicase (BLM) stimulates DNA polymerase δ progression across telomeric G-rich repeats, only WRN promotes sequential strand displacement synthesis and FEN1 cleavage, a critical step in Okazaki fragment maturation, at these sequences. Helicase activity, as well as the conserved winged-helix (WH) motif and the helicase and RNase D C-terminal (HRDC) domain play important but distinct roles in this process. Remarkably, WRN also influences the formation of FEN1 cleavage products during strand displacement on a nontelomeric substrate, suggesting that WRN recruitment and cooperative interaction with FEN1 during lagging-strand synthesis may serve to regulate sequential strand displacement and flap cleavage at other genomic sites. These findings define a biochemical context for the physiological role of WRN in maintaining genetic stability.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , Endonucleasas de ADN Solapado/metabolismo , Helicasa del Síndrome de Werner/metabolismo , Secuencias de Aminoácidos , ADN/biosíntesis , Células HeLa , Homeostasis , Humanos , Polimerizacion , Dominios Proteicos , RecQ Helicasas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Especificidad por Sustrato , Telómero/metabolismo , Helicasa del Síndrome de Werner/química
4.
F1000Res ; 5: 2536, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803806

RESUMEN

Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research.

5.
Sci Rep ; 6: 30999, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27484195

RESUMEN

Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Proteínas Portadoras/fisiología , Proteínas con Dominio LIM/genética , Músculo Esquelético/patología , Distrofia Miotónica/patología , Animales , Exones , Regulación del Desarrollo de la Expresión Génica , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Miotónica/etiología , Distrofia Miotónica/metabolismo , Unión Proteica , Proteínas de Unión al ARN
6.
EBioMedicine ; 2(9): 1034-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26501102

RESUMEN

Loss of Muscleblind-like 1 (Mbnl1) is known to alter Clc-1 splicing to result in myotonia. Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) mice, depleted of Mbnl1 and Mbnl3, demonstrate a profound enhancement of myotonia and an increase in the number of muscle fibers with very low Clc-1 currents, where gClmax values approach ~ 1 mS/cm(2), with the absence of a further enhancement in Clc-1 splice errors, alterations in polyA site selection or Clc-1 localization. Significantly, Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) muscles demonstrate an aberrant accumulation of Clc-1 RNA on monosomes and on the first polysomes. Mbnl1 and Mbnl3 bind Clc-1 RNA and both proteins bind Hsp70 and eEF1A, with these associations being reduced in the presence of RNA. Thus binding of Mbnl1 and Mbnl3 to Clc-1 mRNA engaged with ribosomes can facilitate an increase in the local concentration of Hsp70 and eEF1A to assist Clc-1 translation. Dual depletion of Mbnl1 and Mbnl3 therefore initiates both Clc-1 splice errors and translation defects to synergistically enhance myotonia. As the HSA(LR) model for myotonic dystrophy (DM1) shows similar Clc-1 defects, this study demonstrates that both splice errors and translation defects are required for DM1 pathology to manifest. RESEARCH IN CONTEXT: Research in context: Myotonic Dystrophy type 1 (DM1) is a dominant disorder resulting from the expression of expanded CUG repeat RNA, which aberrantly sequesters and inactivates the muscleblind-like (MBNL) family of proteins. In mice, inactivation of Mbnl1 is known to alter Clc-1 splicing to result in myotonia. We demonstrate that concurrent depletion of Mbnl1 and Mbnl3 results in a synergistic enhancement of myotonia, with an increase in muscle fibers showing low chloride currents. The observed synergism results from the aberrant accumulation of Clc-1 mRNA on monosomes and the first polysomes. This translation error reflects the ability of Mbnl1 and Mbnl3 to act as adaptors that recruit Hsp70 and eEF1A to the Clc-1 mRNA engaged with ribosomes, to facilitate translation. Thus our study demonstrates that Clc-1 RNA translation defects work coordinately with Clc-1 splice errors to synergistically enhance myotonia in mice lacking Mbnl1 and Mbnl3.


Asunto(s)
Proteínas Portadoras/genética , Canales de Cloruro/genética , Proteínas de Unión al ADN/genética , Miotonía/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Canales de Cloruro/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Immunoblotting , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miotonía/metabolismo , Miotonía/fisiopatología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/fisiopatología , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/genética , Ribosomas/metabolismo
7.
Sci Rep ; 5: 9042, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25761764

RESUMEN

Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1(ΔE2/ΔE2)) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2-4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1(ΔE2/ΔE2) mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease.


Asunto(s)
Empalme Alternativo , Eliminación de Gen , Distrofia Miotónica/genética , Isoformas de ARN , Proteínas de Unión al ARN/genética , Animales , Arritmia Sinusal , Calcinosis , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Fibrosis , Expresión Génica , Orden Génico , Marcación de Gen , Sitios Genéticos , Longevidad/genética , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Distrofia Miotónica/fisiopatología , Fenotipo
8.
Aging Cell ; 13(2): 367-78, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24757718

RESUMEN

The Werner syndrome protein (WRN) is a nuclear protein required for cell growth and proliferation. Loss-of-function mutations in the Werner syndrome gene are associated with the premature onset of age-related diseases. How loss of WRN limits cell proliferation and induces replicative senescence is poorly understood. Here, we show that WRN depletion leads to a striking metabolic shift that coordinately weakens the pathways that generate reducing equivalents for detoxification of reactive oxygen species and increases mitochondrial respiration. In cancer cells, this metabolic shift counteracts the Warburg effect, a defining characteristic of many malignant cells, resulting in altered redox balance and accumulation of oxidative DNA damage that inhibits cell proliferation and induces a senescence-like phenotype. Consistent with these findings, supplementation with antioxidant rescues at least in part cell proliferation and decreases senescence in WRN-knockdown cancer cells. These results demonstrate that WRN plays a critical role in cancer cell proliferation by contributing to the Warburg effect and preventing metabolic stress.


Asunto(s)
Regulación hacia Abajo/genética , Exodesoxirribonucleasas/genética , Homeostasis , Neoplasias/metabolismo , Neoplasias/patología , RecQ Helicasas/genética , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Exodesoxirribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glutatión/metabolismo , Glutatión/farmacología , Homeostasis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sustancias Macromoleculares/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Niacinamida/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , RecQ Helicasas/metabolismo , Síndrome de Werner/genética , Helicasa del Síndrome de Werner
9.
PLoS One ; 7(11): e48825, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166594

RESUMEN

Myotonic dystrophy (DM1) is a highly variable, multi-system disorder resulting from the expansion of an untranslated CTG tract in DMPK. In DM1 expanded CUG repeat RNAs form hairpin secondary structures that bind and aberrantly sequester the RNA splice regulator, MBNL1. RNA splice defects resulting as a consequence of MBNL1 depletion have been shown to play a key role in the development of DM1 pathology. In patient populations, both the number and severity of DM1 symptoms increase broadly as a function of CTG tract length. However significant variability in the DM1 phenotype is observed in patients encoding similar CTG repeat numbers. Here we demonstrate that a gradual decrease in MBNL1 levels results both in the expansion of the repertoire of splice defects and an increase in the severity of the splice alterations. Thus, MBNL1 loss does not have an all or none outcome but rather shows a graded effect on the number and severity of the ensuing splice defects. Our results suggest that once a critical threshold is reached, relatively small dose variations of free MBNL1 levels, which may reflect modest changes in the size of the CUG tract or the extent of hairpin secondary structure formation, can significantly alter the number and severity of splice abnormalities and thus contribute to the phenotype variability observed in DM1 patients.


Asunto(s)
Distrofia Miotónica/genética , Fenotipo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Western Blotting , Semivida , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotónica/patología , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido/genética
10.
Aging (Albany NY) ; 4(8): 567-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22948034

RESUMEN

Small increases in the expression of wild-type prelamin A are sufficient to recapitulate the reduced cell proliferation and altered nuclear membrane morphology observed in cells expressing progerin, the mutant lamin A associated with progeria. We hypothesized that the manifestation of these phenotypes in cells expressing elevated levels of wild-type prelamin A or progerin is caused by the same molecular effectors, which play a central role in the onset of the progeroid phenotype. To experimentally test this hypothesis, we compared the transcriptomes of isogenic diploid fibroblasts expressing progerin or elevated levels of wild-type prelamin A with that of wild-type fibroblasts. We subsequently used the reversion towards normal of two phenotypes, reduced cell growth and dismorphic nuclei, by treatment with farnesyltransferase inhibitor (FTI) or overexpression of ZMPSTE24, as a filtering strategy to identify genes linked to the onset of these two phenotypes. Through this analysis we identified the gene encoding for the transcription factor FOXQ1, as a gene whose expression is induced in both cells expressing progerin and elevated levels of wild-type prelamin A, and subsequently reduced in both cell types upon conditions that ameliorate the phenotypes. We overexpressed FOXQ1 in normal fibroblasts and demonstrated that increased levels of this factor lead to the development of both features that were used in the filtering strategy. These findings suggest a potential link between this transcription factor and cell dysfunction induced by altered prelamin A metabolism.


Asunto(s)
Farnesiltransferasa/antagonistas & inhibidores , Fibroblastos/citología , Factores de Transcripción Forkhead/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas Nucleares/metabolismo , Progeria/genética , Precursores de Proteínas/metabolismo , Línea Celular , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Lamina Tipo A , Membrana Nuclear/metabolismo , Progeria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Cell ; 150(4): 710-24, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901804

RESUMEN

The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Distrofia Miotónica/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Regiones no Traducidas 3' , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Exones , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Distrofia Miotónica/genética , Proteínas Nucleares , Especificidad de Órganos , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética
12.
Exp Cell Res ; 318(1): 1-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21871450

RESUMEN

Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.


Asunto(s)
Envejecimiento , Lamina Tipo A/metabolismo , Prenilación , Animales , Humanos , Lamina Tipo A/genética , Proteínas Nucleares/metabolismo , Progeria/genética , Progeria/metabolismo , Precursores de Proteínas/metabolismo
13.
J Biol Chem ; 286(44): 38427-38438, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21900255

RESUMEN

To understand the role of the splice regulator muscleblind 1 (MBNL1) in the development of RNA splice defects in myotonic dystrophy I (DM1), we purified RNA-independent MBNL1 complexes from normal human myoblasts and examined the behavior of these complexes in DM1 myoblasts. Antibodies recognizing MBNL1 variants (MBNL1(CUG)), which can sequester in the toxic CUG RNA foci that develop in DM1 nuclei, were used to purify MBNL1(CUG) complexes from normal myoblasts. In normal myoblasts, MBNL1(CUG) bind 10 proteins involved in remodeling ribonucleoprotein complexes including hnRNP H, H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9. Of these proteins, only MBNL1(CUG) colocalizes extensively with DM1 CUG foci (>80% of foci) with its partners being present in <10% of foci. Importantly, the stoichiometry of MBNL1(CUG) complexes is altered in DM1 myoblasts, demonstrating an increase in the steady state levels of nine of its partner proteins. These changes are recapitulated by the expression of expanded CUG repeat RNA in Cos7 cells. Altered stoichiometry of MBNL1(CUG) complexes results from aberrant protein synthesis or stability and is unlinked to PKCα function. Modeling these changes in normal myoblasts demonstrates that increased levels of hnRNP H, H2, H3, F, and DDX5 independently dysregulate splicing in overlapping RNA subsets. Thus expression of expanded CUG repeats alters the stoichiometry of MBNL1(CUG) complexes to allow both the reinforcement and expansion of RNA processing defects.


Asunto(s)
Distrofia Miotónica/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Inmunoprecipitación , Espectrometría de Masas/métodos , Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Mapeo de Interacción de Proteínas/métodos , ARN Interferente Pequeño/metabolismo , Fracciones Subcelulares
14.
EMBO Rep ; 12(7): 735-42, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21637295

RESUMEN

We describe a new mechanism by which CTG tract expansion affects myotonic dystrophy (DM1). Changes to the levels of a panel of RNAs involved in muscle development and function that are downregulated in DM1 are due to aberrant localization of the transcription factor SHARP (SMART/HDAC1-associated repressor protein). Mislocalization of SHARP in DM1 is consistent with increased CRM1-mediated export of SHARP to the cytoplasm. A direct link between CTG repeat expression and SHARP mislocalization is demonstrated as expression of expanded CTG repeats in normal cells recapitulates cytoplasmic SHARP localization. These results demonstrate a role for the inactivation of SHARP transcription in DM1 biology.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Distrofia Miotónica/fisiopatología , Proteínas Nucleares/metabolismo , ARN/metabolismo , Antibióticos Antineoplásicos/farmacología , Citoplasma/metabolismo , Proteínas de Unión al ADN , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Mioblastos/metabolismo , Distrofia Miotónica/genética , Proteínas Nucleares/genética , Transporte de Proteínas/efectos de los fármacos , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética
16.
Aging (Albany NY) ; 3(4): 395-406, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21512205

RESUMEN

In normal cells, telomeres shorten each time a cell divides ultimately resulting in cell senescence. In contrast, cancer cells counteract the loss of telomeric DNA either by inducing the expression of telomerase or by activating the alternative lengthening of telomeres (ALT) pathway. ALT cells are characterized by heterogeneous telomeres and the presence of extrachromosomal circular double-stranded DNA molecules containing telomeric repeat sequences. These telomeric circles (t-circles) are though to be generated through a recombination process and utilized as templates for telomere elongation by rolling-circle-replication, although their precise mechanism of formation and role in telomere maintenance and cell proliferation is largely unknown. Here we show that shRNA-mediated knockdown of the Ku70/80 heterodimer, a factor with functions at both pathological and natural DNA ends, inhibits ALT cell growth and results in a significant decrease in the levels of t-circles without affecting overall telomere length. These findings demonstrate that non homology-based processes contribute to the maintenance of t-circles and proliferation of ALT cells.


Asunto(s)
Antígenos Nucleares/metabolismo , Proliferación Celular , ADN Circular/química , ADN Circular/metabolismo , Proteínas de Unión al ADN/metabolismo , Telómero/metabolismo , Antígenos Nucleares/genética , Línea Celular , Senescencia Celular/genética , ADN Circular/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hibridación Fluorescente in Situ , Autoantígeno Ku , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Helicasa del Síndrome de Werner
17.
Exp Cell Res ; 317(3): 319-29, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20974128

RESUMEN

Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced levels of the basal transcription factor TATA-binding protein (TBP) and global transcription, and severely limited cell growth. Expression of a prelamin A variant that cannot be farnesylated, although did not appreciably influence cell growth, resulted in the formation of lamin A nucleoplasmic foci and caused, in a minor subpopulation of cells, changes in nuclear morphology that were accompanied by reduced levels of TBP and transcription. In contrast, expression of mature lamin A did not affect any of these parameters. These data demonstrate that accumulation of any partially processed prelamin A protein alters cellular homeostasis to some degree, even though the most dramatic effects are caused by variants with a permanently farnesylated carboxyl-terminal tail.


Asunto(s)
Fibroblastos/metabolismo , Homeostasis , Diploidia , Fibroblastos/fisiología , Variación Genética , Humanos , Lamina Tipo A/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progeria , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
19.
J Biol Chem ; 285(33): 25426-37, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20519504

RESUMEN

The insulin receptor exists as two isoforms, IR-A and IR-B, which result from alternative splicing of exon 11 in the primary transcript. These two isoforms show a cell-specific distribution, and their relative proportions also vary during development, aging, and in different disease states. We have previously demonstrated that both intron 10 and the alternatively spliced exon 11 contain regulatory sequences that affect insulin receptor splicing both positively and negatively and that these sequences bind the serine/arginine-rich (SR) proteins SRp20 and SF2/ASF and the CELF protein CUG-BP1. In this study, we describe a new intronic splicing element within intron 11 that is highly conserved across species. Using minigenes carrying deletion mutations within intron 11, we demonstrated that this sequence functions as an intronic splicing enhancer. We subsequently used RNA affinity chromatography to identify Mbnl1 as a splicing factor that recognizes this enhancer. By ribonucleoprotein immunoprecipitation, we also established that Mbnl1 binds specifically to the INSR (insulin receptor gene) RNA. Overexpression or knockdown of Mbnl1 in hepatoma and embryonic kidney cells altered the levels of exon 11 inclusion. Finally, we showed that deletion of the intronic enhancer eliminates the ability of Mbnl1 to promote exon inclusion. Collectively, these findings demonstrate a role for Mbnl1 in controlling insulin receptor exon 11 inclusion via binding to a downstream intronic enhancer element.


Asunto(s)
Exones/genética , Intrones/genética , Proteínas de Unión al ARN/metabolismo , Receptor de Insulina/genética , Animales , Western Blotting , Línea Celular , Elementos de Facilitación Genéticos , Evolución Molecular , Células Hep G2 , Humanos , Unión Proteica/genética , Unión Proteica/fisiología , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
PLoS One ; 5(3): e9857, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20360842

RESUMEN

Assessment of molecular defects that underlie cognitive deficits observed in mendelian disorders provides a unique opportunity to identify key regulators of human cognition. Congenital Myotonic Dystrophy 1 (cDM1), a multi-system disorder is characterized by both cognitive deficits and a spectrum of behavioral abnormalities, which include visuo-spatial memory deficits, anxiety and apathy. Decreased levels of DMPK (Dystrophia Myotonica-protein kinase), SIX5, a transcription factor or MBNL1 (Muscleblind-like 1), an RNA splice regulator have been demonstrated to contribute to distinct features of cDM1. Mouse strains in which either Dmpk, Six5 or Mbnl1 are inactivated were therefore studied to determine the relative contribution of each gene to these cognitive functions. The open field and elevated plus maze tasks were used to examine anxiety, sucrose consumption was used to assess motivation, whereas the water maze and context fear conditioning were used to examine spatial learning and memory. Cognitive and behavioral abnormalities were observed only in Mbnl1 deficient mice, which demonstrate behavior consistent with motivational deficits in the Morris water maze, a complex visuo-spatial task and in the sucrose consumption test for anhedonia. All three models of cDM1 exhibit normal spatial learning and memory. These data identify MBNL1 as a potential regulator of emotional state with decreased MBNL1 levels underlying the motivational deficits observed in cDM1.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Distrofia Miotónica/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Conducta Animal , Cognición , Proteínas de Unión al ADN/genética , Miedo , Hipocampo/metabolismo , Proteínas de Homeodominio/genética , Humanos , Memoria , Ratones , Ratones Transgénicos , Motivación , Músculos/patología , Mutación , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , Conducta Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA