Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014388

RESUMEN

Development of novel Cu-based catalysts has become one of the frontiers in the catalytic production of platform chemicals and in environment protection. However, the known methods of their synthesis are too complicated and result in materials that cannot be used instantly as commercial catalysts. In the present work, a novel material has been synthesized by the facile method of deposition-precipitation using thermal hydrolysis of urea. The conditions for Cu phyllosilicate formation have been revealed (molar ratio urea:copper = 10, 92 °C, 8-11 h). The prepared Cu-based materials were studied by TG-DTA, SEM, TEM, XRD, N2 adsorption and TPR-H2 methods, and it was found that the material involves nanoparticles of micro-mesoporous copper phyllosilicate phase with a chrysocolla-like structure inside the pores of a commercial meso-macroporous silica carrier. The chrysocolla-like phase is first shown to be catalytically active in the selective reduction of the nitro-group in trinitrobenzene to an amino-group with molecular hydrogen. Complete conversion of trinitrobenzene with a high yield of amines has been achieved in short time under relatively mild conditions (170 °C, 1.3 MPa) of nitroarene hydrogenation over a copper catalyst.

2.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209142

RESUMEN

A new reality of the 21st century is the transition to a new type of economy and energy concepts characterized by the replacement of existing petrochemical routes to a bio-based circular economy. The needs for new strategies in obtaining basic products from bio-based resources with minimum CO2 traces has become mandatory. In this review, recent trends in the conversion of biomass-derived molecules, such as simple monomeric sugars and cellulose, to industrially important C5 and C6 sugar alcohols on heterogeneous catalysts based on non-noble metals are discussed focusing on the influence of catalyst structures and reaction conditions used on the substrate conversion and product selectivity. The challenges and prominent ideas are suggested for the further development of catalytic hydrogenation of naturally abundant carbohydrates to value-added chemicals on non-noble metal catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...