Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(5): 917-935, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779874

RESUMEN

Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.


Asunto(s)
Analgesia , Morfina , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Receptores de N-Metil-D-Aspartato/metabolismo , Roedores/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/metabolismo , Relación Dosis-Respuesta a Droga
2.
Nat Commun ; 13(1): 923, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177668

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/ultraestructura , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Fragmentos Fab de Inmunoglobulinas/farmacología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/aislamiento & purificación , Región Variable de Inmunoglobulina/farmacología , Región Variable de Inmunoglobulina/ultraestructura , Simulación de Dinámica Molecular , Oocitos , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/ultraestructura , Células Sf9 , Spodoptera , Xenopus laevis
4.
Nat Commun ; 10(1): 321, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659174

RESUMEN

Context-dependent inhibition of N-methyl-D-aspartate (NMDA) receptors has important therapeutic implications for the treatment of neurological diseases that are associated with altered neuronal firing and signaling. This is especially true in stroke, where the proton concentration in the afflicted area can increase by an order of magnitude. A class of allosteric inhibitors, the 93-series, shows greater potency against GluN1-GluN2B NMDA receptors in such low pH environments, allowing targeted therapy only within the ischemic region. Here we map the 93-series compound binding site in the GluN1-GluN2B NMDA receptor amino terminal domain and show that the interaction of the N-alkyl group with a hydrophobic cage of the binding site is critical for pH-dependent inhibition. Mutation of residues in the hydrophobic cage alters pH-dependent potency, and remarkably, can convert inhibitors into potentiators. Our study provides a foundation for the development of highly specific neuroprotective compounds for the treatment of neurological diseases.


Asunto(s)
Propanolaminas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oocitos , Técnicas de Placa-Clamp , Propanolaminas/química , Ratas , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
5.
Neuron ; 98(3): 521-529.e3, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29656875

RESUMEN

Alternative gene splicing gives rise to N-methyl-D-aspartate (NMDA) receptor ion channels with defined functional properties and unique contributions to calcium signaling in a given chemical environment in the mammalian brain. Splice variants possessing the exon-5-encoded motif at the amino-terminal domain (ATD) of the GluN1 subunit are known to display robustly altered deactivation rates and pH sensitivity, but the underlying mechanism for this functional modification is largely unknown. Here, we show through cryoelectron microscopy (cryo-EM) that the presence of the exon 5 motif in GluN1 alters the local architecture of heterotetrameric GluN1-GluN2 NMDA receptors and creates contacts with the ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, which are absent in NMDA receptors lacking the exon 5 motif. The unique interactions established by the exon 5 motif are essential to the stability of the ATD/LBD and LBD/LBD interfaces that are critically involved in controlling proton sensitivity and deactivation.


Asunto(s)
Empalme de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Insectos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de N-Metil-D-Aspartato/química , Xenopus laevis
7.
Neuron ; 95(4): 896-913.e10, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817804

RESUMEN

Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.


Asunto(s)
Compuestos de Dansilo/metabolismo , Galactosamina/análogos & derivados , Neurturina/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células COS , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Pollos , Técnicas de Cocultivo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Galactosamina/genética , Galactosamina/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neurturina/genética , Mapas de Interacción de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Alineación de Secuencia
8.
J Gen Physiol ; 149(6): 661-680, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28507080

RESUMEN

Ionotropic glutamate receptors (iGluRs), including AMPA receptor (AMPAR) and NMDA receptor (NMDAR) subtypes, are ligand-gated ion channels that mediate signaling at the majority of excitatory synapses in the nervous system. The iGluR pore domain is structurally and evolutionarily related to an inverted two-transmembrane K+ channel. Peripheral to the pore domain in eukaryotic iGluRs is an additional transmembrane helix, the M4 segment, which interacts with the pore domain of a neighboring subunit. In AMPARs, the integrity of the alignment of a specific face of M4 with the adjacent pore domain is essential for receptor oligomerization. In contrast to AMPARs, NMDARs are obligate heterotetramers composed of two GluN1 and typically two GluN2 subunits. Here, to address the function of the M4 segments in NMDARs, we carry out a tryptophan scan of M4 in GluN1 and GluN2A subunits. Unlike AMPARs, the M4 segments in NMDAR subunits makes only a limited contribution to their biogenesis. However, the M4 segments in both NMDAR subunits are critical for receptor activation, with mutations at some positions, most notably at the extreme extracellular end, completely halting the gating process. Furthermore, although the AMPAR M4 makes a minimal contribution to receptor desensitization, the NMDAR M4 segments have robust and subunit-specific effects on desensitization. These findings reveal that the functional roles of the M4 segments in AMPARs and NMDARs have diverged in the course of their evolution and that the M4 segments in NMDARs may act as a transduction pathway for receptor modulation at synapses.


Asunto(s)
Evolución Molecular , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células HEK293 , Humanos , Activación del Canal Iónico , Dominios Proteicos , Multimerización de Proteína , Ratas , Receptores AMPA/química , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética
9.
Neuron ; 91(6): 1187-1189, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27657445

RESUMEN

Two articles in this issue of Neuron (Yelshanskaya et al., 2016; Yi et al., 2016) explore the structural basis of allosteric inhibition in ionotropic glutamate receptors, providing key insights into how iGluRs function in the brain as well as how they might be pharmacologically modulated in neurological disorders and disease.


Asunto(s)
Encéfalo , Receptores Ionotrópicos de Glutamato/química , Humanos , Neuronas , Receptores de Glutamato
10.
Curr Opin Struct Biol ; 33: 68-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26282925

RESUMEN

N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.


Asunto(s)
Receptores de N-Metil-D-Aspartato/fisiología , Regulación Alostérica , Animales , Canales Iónicos/metabolismo , Aprendizaje/fisiología , Ligandos , Mamíferos/genética , Memoria/fisiología , Unión Proteica , Conformación Proteica
11.
Trends Biochem Sci ; 40(6): 328-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25941168

RESUMEN

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function, including learning and memory formation. Recently a wealth of structural studies on iGluRs including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, and this illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. We review mechanistic insights into iGluR functions gained through structural studies of multiple groups.


Asunto(s)
Receptores AMPA/química , Receptores Ionotrópicos de Glutamato/química , Receptores de Ácido Kaínico/química , Receptores de N-Metil-D-Aspartato/química , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Humanos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Conformación Proteica , Receptores AMPA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Transmisión Sináptica/genética
12.
Proc Natl Acad Sci U S A ; 110(33): 13374-9, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23898196

RESUMEN

The Ets-Related Gene (ERG) belongs to the Ets family of transcription factors and is critically important for maintenance of the hematopoietic stem cell population. A chromosomal translocation observed in the majority of human prostate cancers leads to the aberrant overexpression of ERG. We have identified regions flanking the ERG Ets domain responsible for autoinhibition of DNA binding and solved crystal structures of uninhibited, autoinhibited, and DNA-bound ERG. NMR-based measurements of backbone dynamics show that uninhibited ERG undergoes substantial dynamics on the millisecond-to-microsecond timescale but autoinhibited and DNA-bound ERG do not. We propose a mechanism whereby the allosteric basis of ERG autoinhibition is mediated predominantly by the regulation of Ets-domain dynamics with only modest structural changes.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/metabolismo , Modelos Moleculares , Transactivadores/química , Regulación Alostérica/fisiología , Calorimetría , Clonación Molecular , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Oligonucleótidos/genética , Estructura Terciaria de Proteína , Análisis Espectral , Factores de Tiempo , Transactivadores/metabolismo , Regulador Transcripcional ERG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...