Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Surg ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913424

RESUMEN

Surgical resection is essential for treating solid tumors, with success largely dependent on the complete excision of neoplastic cells. However, neurosurgical procedures must delicately balance tumor removal with the preservation of surrounding tissue. Achieving clear margins is particularly challenging in cases like glioblastoma due to the limitations of traditional white light visualization. These limitations often result in incomplete resections, leading to frequent recurrences, or excessive resection that harms vital neural structures, causing iatrogenic nerve damage which can lead to sensory and functional deficits. Current statistics reveal a 90% recurrence rate for malignant gliomas. Similarly, an 8% incidence of iatrogenic nerve trauma contributes to an estimated 25 million cases of peripheral nerve injury globally each year. These figures underscore the urgent need for improved intraoperative techniques for lesion margin and nerve identification and visualization. Recent advances in neurosurgical imaging, such as fluorescence-guided surgery (FGS), have begun to address these challenges. Fluorescent agents used in FGS illuminate target tissues, although not all do so selectively. Despite the promising results of agents such as 5-aminolevulinic acid and indocyanine green, their applications are mainly limited by issues of sensitivity and specificity. Furthermore, these agents do not effectively address the need for precise nerve visualization. Nerve Peptide 41, a novel systemically administered fluorescent nerve-targeted probe, shows promise in filling this gap. This review assesses the major fluorescent imaging modalities in neurosurgery, highlighting each of their benefits, limitations, and potential.

2.
Neurosurg Rev ; 47(1): 152, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605210

RESUMEN

Background- Postoperative delirium is a common complication associated with the elderly, causing increased morbidity and prolonged hospital stay. However, its risk factors in chronic subdural hematoma patients have not been well studied. Methods- A total of 202 consecutive patients with chronic subdural hematoma at Peking University Third Hospital between January 2018 and January 2023 were enrolled. Various clinical indicators were analyzed to identify independent risk factors for postoperative delirium using univariate and multivariate regression analyses. Delirium risk prediction models were developed as a nomogram and a Markov chain. Results- Out of the 202 patients (age, 71 (IQR, 18); female-to-male ratio, 1:2.7) studied, 63 (31.2%) experienced postoperative delirium. Univariate analysis identified age (p < 0.001), gender (p = 0.014), restraint belt use (p < 0.001), electrolyte imbalance (p < 0.001), visual analog scale score (p < 0.001), hematoma thickness (p < 0.001), midline shift (p < 0.001), hematoma side (p = 0.013), hematoma location (p = 0.018), and urinal catheterization (p = 0.028) as significant factors. Multivariate regression analysis confirmed the significance of restraint belt use (B = 7.657, p < 0.001), electrolyte imbalance (B = -3.993, p = 0.001), visual analog scale score (B = 2.331, p = 0.016), and midline shift (B = 0.335, p = 0.007). Hematoma thickness and age had no significant impact. Conclusion- Increased midline shift and visual analog scale scores, alongside restraint belt use and electrolyte imbalance elevate delirium risk in chronic subdural hematoma surgery. Our prediction models may offer reference value in this context.


Asunto(s)
Delirio del Despertar , Hematoma Subdural Crónico , Humanos , Masculino , Femenino , Anciano , Hematoma Subdural Crónico/complicaciones , Delirio del Despertar/complicaciones , Estudios Retrospectivos , Factores de Riesgo , Medición de Riesgo , Electrólitos
3.
J Exp Clin Cancer Res ; 43(1): 47, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342925

RESUMEN

In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supresoras de Origen Mieloide , Humanos , Glioma/patología , Glioblastoma/patología , Inmunoterapia , Inmunomodulación , Microambiente Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...