Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bone ; 40(2): 409-18, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16979964

RESUMEN

Numerous growth and transcription factors have been implicated in endochondral bone formation of the growth plate. Many of these factors are up-regulated during hypoxia and downstream of Hypoxia-Inducible Factor (HIF)-1alpha activation. However, the specific function of these factors, in the context of oxygenation and metabolic adaptation during adult periosteal endochondral bone formation, is largely unknown. Here, we studied HIF-1alpha and the possible roles of (HIF-1alpha related) growth and transcription factors in a recently developed in vivo model for adult periosteal endochondral bone formation. At different phases of periosteal endochondral bone formation, mRNA levels of Transforming Growth Factor (TGF)-beta1, Bone Morphogenetic Proteins (BMP)-2, -4, and -7, Indian Hedgehog (Ihh), Parathyroid Hormone-related Protein (PTHrP), Sox9, Runx2, HIF-1alpha, Vascular Endothelial Growth Factor (VEGF), periostin (POSTN), and Glyceraldehyde-3-Phophate Dehydrogenase (GAPDH) were evaluated with RT-real time-PCR. Also protein levels of TGF-beta1, BMP-2, -4, and -7, HIF-1alpha, and POSTN were examined. During the chondrogenic phase, the expression of Sox9, Ihh, and HIF-1alpha was significantly up-regulated. TGF-beta1 mRNA levels were rather constant, and the mRNA levels of BMPs were significantly lower. Immunohistochemical detection of corresponding gene products, however, revealed the presence of the proteins of TGF-beta1, BMP-2, -4, and -7, HIF-1alpha, and POSTN within the chondrocytes during chondrogenesis. This discrepancy in gene expression between mRNA and protein level for TGF-beta1 and the different BMPs is indicative of post-transcriptional regulation of protein synthesis. HIF-1alpha activation and up-regulation of GAPDH support a hypoxia-induced metabolic shift during periosteal chondrogenesis. Our model recapitulates essential steps in osteochondrogenesis and provides a new experimental system to study and ultimately control tissue regeneration in the adult organism.


Asunto(s)
Proteínas Morfogenéticas Óseas/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteogénesis , Animales , Proteínas Morfogenéticas Óseas/genética , Huesos/metabolismo , Cartílago/metabolismo , Condrogénesis , Femenino , Periostio/citología , Periostio/fisiología , ARN Mensajero/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA