Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(26): e2301673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436091

RESUMEN

Despite advances in soft, sticker-like electronics, few efforts have dealt with the challenge of electronic waste. Here, this is addressed by introducing an eco-friendly conductive ink for thin-film circuitry composed of silver flakes and a water-based polyurethane dispersion. This ink uniquely combines high electrical conductivity (1.6 × 105 S m-1 ), high resolution digital printability, robust adhesion for microchip integration, mechanical resilience, and recyclability.  Recycling is achieved with an ecologically-friendly processing method to decompose the circuits into constituent elements and recover the conductive ink with a decrease of only 2.4% in conductivity. Moreover, adding liquid metal enables stretchability of up to 200% strain, although this introduces the need for more complex recycling steps. Finally, on-skin electrophysiological monitoring biostickers along with a recyclable smart package with integrated sensors for monitoring safe storage of perishable foods are demonstrated.

2.
Adv Mater ; 34(31): e2203266, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697348

RESUMEN

E-waste is rapidly turning into another man-made disaster. It is proposed that a paradigm shift toward a more sustainable future can be made through soft-matter electronics that are resilient, repairable if damaged, and recyclable (3R), provided that they achieve the same level of maturity as industrial electronics. This includes high-resolution patterning, multilayer implementation, microchip integration, and automated fabrication. Herein, a novel architecture of materials and methods for microchip-integrated condensed soft-matter 3R electronics is demonstrated. The 3R function is enabled by a biphasic liquid metal-based composite, a block copolymer with nonpermanent physical crosslinks, and an electrochemical technique for material recycling. In addition, an autonomous laser-patterning method for scalable circuit patterning with an exceptional resolution of <30 µm in seconds is developed. The phase-shifting property of the BCPs is utilized for vapor-assisted "soldering" circuit repairing and recycling. The process is performed entirely at room temperature, thereby opening the door for a wide range of heat-sensitive and biodegradable polymers for the next generation of green electronics. The implementation and recycling of sophisticated skin-mounted patches with embedded sensors, electrodes, antennas, and microchips that build a digital fingerprint of the human electrophysiological signals is demonstrated by collecting mechanical, electrical, optical, and thermal data from the epidermis.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrodos , Electrónica , Humanos , Metales , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...