Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Poult Sci ; 61: 2024015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818526

RESUMEN

Iris color is a prominent phenotypic feature of quail. To understand the mechanism of melanin deposition related to quail iris color, iris tissues were selected from Beijing white and Chinese yellow quail for transcriptome analysis. Differentially expressed genes (DEGs) associated with pigmentation were identified using RNA sequencing and validated by quantitative real-time polymerase chain reaction (RT-qPCR). The identified single nucleotide polymorphisms were studied using bioinformatics and iris color correlation analyses. A total of 485 DEGs were obtained, with 223 upregulated and 262 downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Thirty-two genes were annotated using the GO database. Three important pigment synthesis pathways (Notch signaling, melanogenesis, and tyrosine metabolism) were identified in quail iris tissue (P < 0.05). The expression levels of solute carrier family 45 member 2 (SLC45A2), tyrosinase-related protein 1, vitamin D receptor, opsin 5, and docking protein 5 were significantly different between Beijing white and Chinese yellow quail, as verified by RT-qPCR. The c.1061C>T mutation in SLC45A2, which caused a single amino acid change at position 354 (threonine to methionine), was significantly associated with iris color in Beijing white and Chinese yellow quail, and might be the main reason for the different iris colors between these two quail species.

2.
Polymers (Basel) ; 16(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38337245

RESUMEN

Because of the complex nonlinear relationship between working conditions, the prediction of tribological properties has become a difficult problem in the field of tribology. In this study, we employed three distinct machine learning (ML) models, namely random forest regression (RFR), gradient boosting regression (GBR), and extreme gradient boosting (XGBoost), to predict the tribological properties of polytetrafluoroethylene (PTFE) composites under high-speed and high-temperature conditions. Firstly, PTFE composites were successfully prepared, and tribological properties under different temperature, speed, and load conditions were studied in order to explore wear mechanisms. Then, the investigation focused on establishing correlations between the friction and wear of PTFE composites by testing these parameters through the prediction of the friction coefficient and wear rate. Importantly, the correlation results illustrated that the friction coefficient and wear rate gradually decreased with the increase in speed, which was also proven by the correlation coefficient. In addition, the GBR model could effectively predict the tribological properties of the PTFE composites. Furthermore, an analysis of relative importance revealed that both load and speed exerted a greater influence on the prediction of the friction coefficient and wear rate.

3.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337285

RESUMEN

The design of novel acceptor molecular structures based on classical building blocks is regarded as one of the efficient ways to explore the application of organic conjugated materials in conductivity and electronics. Here, a novel acceptor moiety, thiophene-vinyl-diketopyrrolopyrrole (TVDPP), was envisioned and prepared with a longer conjugation length and a more rigid structure than thiophene-diketopyrrolopyrrole (TDPP). The brominated TVDPP can be sequentially bonded to trimethyltin-containing benzo[c][1,2,5]thiadiazole units via Suzuki polycondensation to efficiently prepare the polymer PTVDPP-BSz, which features high molecular weight and excellent thermal stability. The polymerization process takes only 24 h and eliminates the need for chlorinated organic solvents or toxic tin-based reagents. Density functional theory (DFT) simulations and film morphology analyses verify the planarity and high crystallinity of the material, respectively, which facilitates the achievement of high carrier mobility. Conductivity measurements of the polymeric material in the organic transistor device show a hole mobility of 0.34 cm2 V-1 s-1, which illustrates its potential for functionalized semiconductor applications.

4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256172

RESUMEN

In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.


Asunto(s)
Electrónica , Cetonas , Polímeros , Pirroles , Tiofenos , Conductividad Eléctrica
5.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257368

RESUMEN

Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor-acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V-1 s-1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics.

6.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202843

RESUMEN

Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.

7.
Anim Genet ; 55(1): 79-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905379

RESUMEN

To investigate the molecular mechanisms underlying the differences in iris color in quail, the transcriptome of iris tissue from black quail and Korean quail at day 10 of hatching was RNA sequenced in this study. The differentially expressed genes (DEGs) were screened, functionally annotated and enriched after the quality control and mapping of the raw data. RT-qPCR validation was performed using EIF2S3 as an internal reference gene. The screened SNPs were studied by bioinformatics analysis and iris color correlation analysis. The results showed that there were 425 upregulated genes and 364 downregulated genes in 789 DEGs. Gene Ontology (GO) enrichment analysis revealed that 139 DEGs were significantly enriched in 154 GO terms. The Kyoto Encyclopedia of Genes and Genomes enrichment results showed that the Notch signaling pathway, melanogenesis and tyrosine metabolism were associated with pigment synthesis (p < 0.05). The expression levels of the ASIP, MLPH, PMEL, TYR and SOX10 genes were significantly different in black quail iris and Korean quail iris, as verified by RT-qPCR. The SOX10 gene c.324G>C mutation, which caused the replacement of p.Glu108Asp, had a highly significant correlation with iris color in black quail and Korean quail, which may be one of the reasons for different in iris color between these two quail species.


Asunto(s)
Perfilación de la Expresión Génica , Mutación Missense , Animales , Transcriptoma , Análisis de Secuencia de ARN , Fenotipo
9.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38006144

RESUMEN

Conjugated polymer semiconductors based on donor-acceptor structures are commonly employed as core materials for optoelectronic devices in the field of organic electronics. In this study, we designed and synthesized a novel acceptor unit thiophene-vinyl-diketopyrrolopyrrole, named TVDPP, based on a four-step organic synthesis procedure. Stille coupling reactions were applied with high yields of polymerization of TVDPP with fluorinated thiophene (FT) monomer. The molecular weight and thermal stability of the polymers were tested and showed high molecular weight and good thermal stability. Theoretical simulation calculations and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) tests verified the planarity of the material and excellent stacking properties, which are favorable for achieving high carrier mobility. Measurements based on the polymer as an organic thin film transistor (OTFT) device were carried out, and the mobility and on/off current ratio reached 0.383 cm2 V-1 s-1 and 104, respectively, showing its great potential in organic optoelectronics.

10.
Materials (Basel) ; 16(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834547

RESUMEN

Many optoelectronic applications require organic semiconductor (OSC) materials with high electron affinity. In this work, a series of novel acceptor-donor-acceptor (A-D-A) materials with low-lying LUMO energy levels were designed and characterized. In this strategy, two acceptor dyes, bis-isatin and di-2-(2-oxindolin-3-ylidene) malononitrile, were connected by various π-bridges (benzene ring, benzo[c][1,2,5]thiadiazole, monothiophene, trithiophene). We varied the length of the π-conjugation of the central core and the linkage position of the acceptor core (4- vs. 6-position of the phenyl ring) to investigate the effect on the optical and electrochemical properties of the materials. We performed density functional theory (DFT) and time-dependent DFT (TD-DFT) studies to gain insight into the dyes' electronic properties by determining the energy levels. Our findings demonstrate that with increasing acceptor strength and π-conjugation length of the core, the wavelength of the longest absorption maximum as well as their respective extinction coefficients are enhanced, which results in band-gap reduction either by lowering the LUMO and/or raising the HOMO energy level of the molecules. The potential practical utility of these materials as electron-transport materials for perovskite solar cells (PSCs) has been demonstrated.

11.
Polymers (Basel) ; 15(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37765568

RESUMEN

Organic polymer semiconductor materials are conveniently tuned to energy levels because of their good chemically modifiable properties, thus enhancing their carrier transport capabilities. Here, we have designed and prepared a polymer with a donor-acceptor structure and tested its potential as a p-type material for organic field-effect transistor (OFET) applications using a solution-processing method. The conjugated polymers, obtained via the polymerization of the two monomers relying on the Stille coupling reaction, possess extremely high molecular weights and thermodynamic stability. Theoretical-based calculations show that PDPP-2S-Se has superior planarity, which is favorable for carrier transport within the main chain. Photophysical and electrochemical measurements systematically investigated the properties of the material and the energy levels with respect to the theoretical values. The maximum hole mobility of the PDPP-2S-Se-based OFET device is 0.59 cm2 V-1 s-1, which makes it a useful material for potential organic electronics applications.

12.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37765656

RESUMEN

Organic polymer semiconductor materials, due to their good chemical modifiability, can be easily tuned by rational molecular structure design to modulate their material properties, which, in turn, affects the device performance. Here, we designed and synthesized a series of materials based on terpolymer structures and applied them to organic thin-film transistor (OTFT) device applications. The four polymers, obtained by polymerization of three monomers relying on the Stille coupling reaction, shared comparable molecular weights, with the main structural difference being the ratio of the thiazole component to the fluorinated thiophene (Tz/FS). The conjugated polymers exhibited similar energy levels and thermal stability; however, their photochemical and crystalline properties were distinctly different, leading to significantly varied mobility behavior. Materials with a Tz/FS ratio of 50:50 showed the highest electron mobility, up to 0.69 cm2 V-1 s-1. Our investigation reveals the fundamental relationship between the structure and properties of materials and provides a basis for the design of semiconductor materials with higher carrier mobility.

13.
Polymers (Basel) ; 15(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37631449

RESUMEN

The development of n-type organic semiconductor materials for transporting electrons as part of logic circuits is equally important to the development of p-type materials for transporting holes. Currently, progress in research on n-type materials is relatively backward, and the number of polymers with high electron mobility is limited. As the core component of the organic field-effect transistor (OFET), the rational design and judicious selection of the structure of organic semiconductor materials are crucial to enhance the performance of devices. A novel conjugated copolymer with an all-acceptor structure was synthesized based on an effective chemical structure modification and design strategy. PDPPTT-2Tz was obtained by the Stille coupling of the DPPTT monomer with 2Tz-SnMe3, which features high molecular weight and thermal stability. The low-lying lowest unoccupied molecular orbital (LUMO) energy level of the copolymer was attributed to the introduction of electron-deficient bithiazole. DFT calculations revealed that this material is highly planar. The effect of modulation from a donor-acceptor to acceptor-acceptor structure on the improvement of electron mobility was significant, which showed a maximum value of 1.29 cm2 V-1 s-1 and an average value of 0.81 cm2 V-1 s-1 for electron mobility in BGBC-based OFET devices. Our results demonstrate that DPP-based polymers can be used not only as excellent p-type materials but also as promising n-type materials.

14.
Arch Anim Breed ; 66(1): 131-139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124941

RESUMEN

We explore the relationship between the melanophilin (MLPH) gene and quail plumage color and provide a reference for subsequent quail plumage color breeding. In this experiment, real-time quantitative PCR (RT-qPCR) technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two single-nucleotide polymorphisms (SNPs) in the MLPH gene were screened based on the RNA-sequencing (RNA-Seq) data of skin tissues of Korean quail and Beijing white quail during the embryonic stage. Kompetitive allele-specific PCR (KASP) technology was used for genotyping in the resource population, and correlation analysis was carried out with the plumage color traits of quail. Finally, bioinformatics was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression level of the MLPH gene during embryonic development of Beijing white quail was significantly higher than that of Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (CC, CA and AA) of the Beijing white quail at the c.1807C  >  A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (GG, GA and AA) of the Beijing white quail at the c.2129G  >  A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). And there was a significant correlation between the c.1807C  >  A mutation site and the white plumage phenotype. Bioinformatics showed that SNP1 (c.1807C  >  A) was a neutral mutation and that SNP2 (c.2129G  >  A) was a deleterious mutation. The prediction of protein conservation showed that the mutation sites of coding proteins R603S and G710D caused by SNP1 (c.1807C  >  A) and SNP2 (c.2129G  >  A) were highly conserved.

15.
Materials (Basel) ; 16(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984354

RESUMEN

This review highlights selected examples, published in the last three to four years, of recent advance in the design, synthesis, properties, and device performance of quinoidal π-conjugated materials. A particular emphasis is placed on emerging materials, such as indophenine dyes that have the potential to enable high-performance devices. We specifically discuss the recent advances and design guidelines of π-conjugated quinoidal molecules from a chemical standpoint. To the best of the authors' knowledge, this review is the first compilation of literature on indophenine-based semiconducting materials covering their scope, limitations, and applications. In the first section, we briefly introduce some of the organic electronic devices that are the basic building blocks for certain applications involving organic semiconductors (OSCs). We introduce the definition of key performance parameters of three organic devices: organic field effect transistors (OFET), organic photovoltaics (OPV), and organic thermoelectric generators (TE). In section two, we review recent progress towards the synthesis of quinoidal semiconducting materials. Our focus will be on indophenine family that has never been reviewed. We discuss the relationship between structural properties and energy levels in this family of molecules. The last section reports the effect of structural modifications on the performance of devices: OFET, OPV and TE. In this review, we provide a general insight into the association between the molecular structure and electronic properties in quinoidal materials, encompassing both small molecules and polymers. We also believe that this review offers benefits to the organic electronics and photovoltaic communities, by shedding light on current trends in the synthesis and progression of promising novel building blocks. This can provide guidance for synthesizing new generations of quinoidal or diradical materials with tunable optoelectronic properties and more outstanding charge carrier mobility.

16.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38232014

RESUMEN

In this communication, we report a novel acceptor structural unit, TVDPP, that can be distinguished from classical materials based on TDPP structures. By designing a synthetic route via retrosynthetic analysis, we successfully prepared this monomer and further prepared polymer P2TVDPP with high yield using a Stille-coupling polymerization reaction. The polymer showed several expected properties, such as high molecular weight, thermal stability, full planarity, small π-π stacking distance, smooth interface, and so on. The absorption spectra and energy levels of the polymer were characterized via photochemical and electrochemical analysis. The organic field-effect transistor (OFET), which is based on P2TVDPP, exhibited excellent carrier mobility and an on/off current ratio of 0.41 cm2 V-1 s-1 and ~107, respectively, which is an important step in expanding the significance of DPP-based materials in the field of optoelectronic devices and organic electronics.

17.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202654

RESUMEN

Organic dye semiconductors have received increasing attention as the next generation of semiconductors, and one of their potential applications is as a core component of organic transistors. In this study, two novel diketopyrrolopyrrole (DPP) dye core-based materials were designed and separately prepared using Stille coupling reactions under different palladium catalyst conditions. The molecular weights and elemental compositions were tested to demonstrate that both catalysts could be used to successfully prepare materials of this structure, with the main differences being the weight-average molecular weight and the dispersion index. PDPP-2Py-2Tz I with a longer conjugation length exhibited better thermodynamic stability than the counterpart polymer PDPP-2Py-2Tz II. The intrinsic optical properties of the polymers were relatively similar, while the electrochemical tests showed small differences in their energy levels. The polymers obtained with different catalysts displayed similar and moderate electron mobility in transistor devices, while PDPP-2Py-2Tz I possessed a higher switching ratio. Our study provides a comparison of such dye materials under different catalytic conditions and also demonstrates the great potential of dye materials for optoelectronic applications.

18.
Aging (Albany NY) ; 14(24): 10125-10136, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575048

RESUMEN

Postmenopausal osteoporosis (PMO) is a relatively common disease characterized by low bone mass and microstructural changes of trabecular bone. The reduced bone strength is caused a variety of complications, including fragility fracture and sarcopenia. We used CCK-8 and EdU assays to evaluate cell proliferation rates. The osteogenesis effect was detected using ALP staining, alizarin red staining, and q-PCR. In vivo, the effects of exosomes derived from HUC-MSCs were evaluated using HE staining, IHC staining and Masson staining. In addition, we explored the mechanism of exosomes and found that the AKT signaling pathway played an important role in osteogenesis and cell proliferation. This paper mainly explored the function of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) and provided a new strategy for the treatment of postmenopausal osteoporosis. In conclusion, exogenous administration of exosomes can contribute to the treatment postmenopausal osteoporosis to a certain extent.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteoporosis Posmenopáusica , Humanos , Femenino , Osteogénesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Osteoporosis Posmenopáusica/terapia , Osteoporosis Posmenopáusica/metabolismo , Exosomas/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo
19.
Front Pharmacol ; 13: 915609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928260

RESUMEN

Modern cellular biology faces several major obstacles, such as the determination of the concentration of active sites corresponding to chemical substances. In recent years, the popular small-molecule fluorescent probes have completely changed the understanding of cellular biology through their high sensitivity toward specific substances in various organisms. Mitochondria and lysosomes are significant organelles in various organisms, and their interaction is closely related to the development of various diseases. The investigation of their structure and function has gathered tremendous attention from biologists. The advanced nanoscopic technologies have replaced the diffraction-limited conventional imaging techniques and have been developed to explore the unknown aspects of mitochondria and lysosomes with a sub-diffraction resolution. Recent progress in this field has yielded several excellent mitochondria- and lysosome-targeted fluorescent probes, some of which have demonstrated significant biological applications. Herein, we review studies that have been carried out to date and suggest future research directions that will harness the considerable potential of mitochondria- and lysosome-targeted fluorescent probes.

20.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015742

RESUMEN

The thyroid nodule segmentation of ultrasound images is a critical step for the early diagnosis of thyroid cancers in clinics. Due to the weak edge of ultrasound images and the complexity of thyroid tissue structure, it is still challenging to accurately segment the delicate contour of thyroid nodules. A local and context-attention adaptive network (LCA-Net) for thyroid nodule segmentation is proposed to address these shortcomings, which leverages both local feature information from convolution neural networks and global context information from transformers. Firstly, since most existing thyroid nodule segmentation models are skilled at local detail features and lose some context information, we propose a transformers-based context-attention module to capture more global associative information for the network and perceive the edge information of the nodule contour. Secondly, a backbone module with 7×1, 1×7 convolutions and the activation function Mish is designed, which enlarges the receptive field and extracts more feature details. Furthermore, a nodule adaptive convolution (NAC) module is introduced to adaptively deal with thyroid nodules of different sizes and positions, thereby improving the generalization performance of the model. Simultaneously, an optimized loss function is proposed to solve the pixels class imbalance problem in segmentation. The proposed LCA-Net, validated on the public TN-SCUI2020 and TN3K datasets, achieves Dice scores of 90.26% and 82.08% and PA scores of 98.87% and 96.97%, respectively, which outperforms other state-of-the-art thyroid nodule segmentation models. This paper demonstrates the superiority of the proposed LCA-Net for thyroid nodule segmentation, which possesses strong generalization performance and promising segmentation accuracy. Consequently, the proposed model has wide application prospects for thyroid nodule diagnosis in clinics.


Asunto(s)
Nódulo Tiroideo , Atención , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Nódulo Tiroideo/diagnóstico por imagen , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA