RESUMEN
Caligus rogercresseyi is a host-dependent parasite that affects rainbow trout and Atlantic salmon in Chile. Numbers of sea lice on fish increase over time at relatively predictable rates when the environment is conducive to the parasite's survival and fish are not undergoing treatment. We developed a tool for the salmon industry in Chile that predicts the abundance of adult sea lice over time on farms that are relatively isolated. We used data on sea louse abundance collected through the SalmonChile INTESAL sea lice monitoring program to create series of weekly lice counts between lice treatment events on isolated farms. We defined isolated farms as those with no known neighbors within a 10 km seaway distance and no more than two neighbors within a 20 km seaway distance. We defined the time between sea lice treatments as starting the week immediately post treatment and ending the week before a subsequent treatment. Our final dataset of isolated farms consisted of 65 series from 32 farms, between 2009 and 2015. Given an observed abundance at time t = 0, we built a model that predicted 8 consecutive weekly sea louse abundance levels, based on the preceding week's lice prediction. We calibrated the parameters in our model on a randomly selected subset of training data, choosing the parameter combinations that minimized the absolute difference between the predicted and observed sea louse abundance values. We validated the parameters on the remaining, unseen, subset of data. We encoded our model and made it available as a Web-accessible applet for producers. We determined a threshold, based on the upper 97.5% predictive interval, as a guideline for producers using the tool. We hypothesize that if farms exceed this threshold, especially if the sea lice levels are above this threshold 2 and 4 weeks into the model predictions, the sea louse population on the farm is likely influenced by sources other than lice within the farm.
Asunto(s)
Copépodos/fisiología , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/epidemiología , Oncorhynchus mykiss , Salmo salar , Animales , Chile/epidemiología , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/parasitología , Enfermedades de los Peces/parasitología , Modelos Biológicos , Dinámica PoblacionalRESUMEN
The decline of fisheries over recent decades and a growing human population has coincided with an increase in aquaculture production. As farmed fish densities increase, so have their rates of infectious diseases, as predicted by the theory of density-dependent disease transmission. One of the pathogen that has increased with the growth of salmon farming is sea lice. Effective management of this pathogen requires an understanding of the spatial scale of transmission. We used a two-part multi-scale model to account for the zero-inflated data observed in weekly sea lice abundance levels on rainbow trout and Atlantic salmon farms in Chile, and to assess internal (farm) and external (regional) sources of sea lice infection. We observed that the level of juvenile sea lice was higher on farms that were closer to processing plants with fish holding facilities. Further, evidence for sea lice exposure from the surrounding area was supported by a strong positive correlation between the level of juvenile sea lice on a farm and the number of gravid females on neighboring farms within 30 km two weeks prior. The relationship between external sources of sea lice from neighboring farms and juvenile sea lice on a farm was one of the strongest detected in our multivariable model. Our findings suggest that the management of sea lice should be coordinated between farms and should include all farms and processing plants with holding facilities within a relatively large geographic area. Understanding the contribution of pathogens on a farm from different sources is an important step in developing effective control strategies.