Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 22(2): 695-710, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34383377

RESUMEN

We performed gene and genome targeted SNP discovery towards the development of a genome-wide, multispecies genotyping array for tropical pines. Pooled RNA-seq data from shoots of seedlings from five tropical pine species was used to identify transcript-based SNPs resulting in 1.3 million candidate Affymetrix SNP probe sets. In addition, we used a custom 40 K probe set to perform capture-seq in pooled DNA from 81 provenances representing the natural ranges of six tropical pine species in Mexico and Central America resulting in 563 K candidate SNP probe sets. Altogether, 300 K RNA-seq (72%) and 120 K capture-seq (28%) derived SNP probe sets were tiled on a 420 K screening array that was used to genotype 576 trees representing the 81 provenances and commercial breeding material. Based on the screening array results, 50 K SNPs were selected for commercial SNP array production including 20 K polymorphic SNPs for P. patula, P. tecunumanii, P. oocarpa and P. caribaea, 15 K for P. greggii and P. maximinoi, 13 K for P. elliottii and 8K for P. pseudostrobus. We included 9.7 K ancestry informative SNPs that will be valuable for species and hybrid discrimination. Of the 50 K SNP markers, 25% are polymorphic in only one species, while 75% are shared by two or more species. The Pitro50K SNP chip will be useful for population genomics and molecular breeding in this group of pine species that, together with their hybrids, represent the majority of fast-growing tropical and subtropical pine plantations globally.


Asunto(s)
Pinus , Árboles , Genoma , Genotipo , Pinus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Árboles/genética
2.
Mol Ecol ; 30(3): 625-638, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32881106

RESUMEN

The genetic consequences of adaptation to changing environments can be deciphered using population genomics, which may help predict species' responses to global climate change. Towards this, we used genome-wide SNP marker analysis to determine population structure and patterns of genetic differentiation in terms of neutral and adaptive genetic variation in the natural range of Eucalyptus grandis, a widely cultivated subtropical and temperate species, serving as genomic reference for the genus. We analysed introgression patterns at subchromosomal resolution using a modified ancestry mapping approach and identified provenances with extensive interspecific introgression in response to increased aridity. Furthermore, we describe potentially adaptive genetic variation as explained by environment-associated SNP markers, which also led to the discovery of what is likely a large structural variant. Finally, we show that genes linked to these markers are enriched for biotic and abiotic stress responses.


Asunto(s)
Eucalyptus , Aclimatación , Adaptación Fisiológica/genética , Eucalyptus/genética , Genómica , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...