Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 84(5): 802-810, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33302287

RESUMEN

ABSTRACT: Ready-to-eat meat products, such as deli ham, can support the growth of Listeria monocytogenes (LM), which can cause severe illness in immunocompromised individuals. The objectives of this study were to validate a miniature ham model (MHM) against the ham slice method and to screen antimicrobial combinations to control LM on ham by using response surface methology (RSM) as a time- and cost-effective high-throughput screening tool. The effect of nisin (Ni), potassium lactate and sodium diacetate, lauric arginate (LAG), lytic bacteriophage (P100), and ε-polylysine (EPL) added alone, or in combination, were determined on the MHM over 12 days of storage. Results showed the MHM accurately mimics the ham slice method because no statistical differences were found (P = 0.526) in the change of LM cell counts in MHM and slice counts after 12 days of storage at 4°C for treated and untreated hams. The MHM was then used to screen antimicrobial combinations by using an on-face design and three center points in a central composite design. The RSM was tested by using a cocktail of five LM strains isolated from foodborne disease outbreaks. Three levels of the previously mentioned antimicrobials were used in combination for a total of 28 runs performed in triplicate. The change of LM cell counts were determined after 12 days of storage at 4°C. All tested antimicrobials were effective on reducing LM cell counts on ham when added alone. A significant antagonistic interaction (P = 0.002) was identified by the RSM between LAG and P100, where this antimicrobial combination caused a 2.2-log CFU/g change of LM cell counts after 12 days of storage. Two interactions, between Ni and EPL (P = 0.058), and Ni and P100 (P = 0.068), showed possible synergistic effects against LM on the MHM. Other interactions were clearly nonsignificant, suggesting additive effects. In future work, the developed MHM in combination with RSM can be used as a high-throughput method to analyze novel antimicrobial treatments against LM.


Asunto(s)
Antiinfecciosos , Listeria monocytogenes , Productos de la Carne , Recuento de Colonia Microbiana , Análisis Costo-Beneficio , Microbiología de Alimentos , Conservación de Alimentos , Humanos
2.
Foods ; 9(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233500

RESUMEN

Listeria monocytogenes is a food-borne pathogen often associated with ready-to-eat (RTE) food products. Many antimicrobial compounds have been evaluated in RTE meats. However, the search for optimum antimicrobial treatments is ongoing. The present study developed a rapid, non-destructive preliminary screening tool for large-scale evaluation of antimicrobials utilizing a bioluminescent L. monocytogenes with a model meat system. Miniature hams were produced, surface treated with antimicrobials nisin (at 0-100 ppm) and potassium lactate sodium diacetate (at 0-3.5%) and inoculated with bioluminescent L. monocytogenes. A strong correlation (r = 0.91) was found between log scale relative light units (log RLU, ranging from 0.00 to 3.35) read directly from the ham surface and endpoint enumeration on selective agar (log colony forming units (CFU)/g, ranging from 4.7 to 8.3) when the hams were inoculated with 6 log CFU/g, treated with antimicrobials, and L. monocytogenes were allowed to grow over a 12 d refrigerated shelf life at 4 °C. Then, a threshold of 1 log RLU emitted from a ham surface was determined to separate antimicrobial treatments that allowed more than 2 log CFU/g growth of L. monocytogenes (from 6 log CFU/g inoculation to 8 log CFU/g after 12 d). The proposed threshold was utilized in a luminescent screening of antimicrobials with days-to-detect growth monitoring of luminescent L. monocytogenes. Significantly different (p < 0.05) plate counts were found in antimicrobial treated hams that had reached a 1 log RLU increase (8.1-8.5 log(CFU/g)) and the hams that did not reach the proposed light threshold (5.3-7.5 log(CFU/g)). This confirms the potential use of the proposed light threshold as a qualitative tool to screen antimicrobials with less than or greater than a 2 log CFU/g increase. This screening tool can be used to prioritize novel antimicrobials targeting L. monocytogenes, alone or in combination, for future validation.

3.
Front Microbiol ; 9: 1785, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197628

RESUMEN

The popularity of fermented foods and beverages is due to their enhanced shelf-life, safety, functionality, sensory, and nutritional properties. The latter includes the presence of bioactive molecules, vitamins, and other constituents with increased availability due to the process of fermentation. Many fermented foods also contain live microorganisms that may improve gastrointestinal health and provide other health benefits, including lowering the risk of type two diabetes and cardiovascular diseases. The number of organisms in fermented foods can vary significantly, depending on how products were manufactured and processed, as well as conditions and duration of storage. In this review, we surveyed published studies in which lactic acid and other relevant bacteria were enumerated from the most commonly consumed fermented foods, including cultured dairy products, cheese, fermented sausage, fermented vegetables, soy-fermented foods, and fermented cereal products. Most of the reported data were based on retail food samples, rather than experimentally produced products made on a laboratory scale. Results indicated that many of these fermented foods contained 105-7 lactic acid bacteria per mL or gram, although there was considerable variation based on geographical region and sampling time. In general, cultured dairy products consistently contained higher levels, up to 109/mL or g. Although few specific recommendations and claim legislations for what constitutes a relevant dose exist, the findings from this survey revealed that many fermented foods are a good source of live lactic acid bacteria, including species that reportedly provide human health benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA