Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Neonate ; 77(1): 37-44, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10658829

RESUMEN

Clinical use of nitric oxide (NO) is usually in conjunction with high oxygen concentrations, the effects of which may include lung neutrophil accumulation, apoptosis and upregulation of antioxidant enzyme activity. To define the effects of NO on neutrophils from young piglets and its relationship to lung neutrophil dynamics during hyperoxia we exposed thirty piglets to room air (RA), RA+NO (50 ppm NO), O2 (FiO2> or =0.96) or O2+NO for 5 days. Ten additional animals breathed RA+NO or O2+NO, then recovered in RA for 3 days before sacrifice. Neutrophil CD18 and intracellular oxidant production were measured by flow cytometry. Lung apoptosis were assessed by TUNEL assay. Lung myeloperoxidase, SOD and catalase were measured biochemically. When compared to RA group, there was significant reduction in neutrophil CD18 and intracellular oxidant production in the RA+NO group, but lung MPO was unchanged. The O2 and O2+NO groups did not differ in CD18 expression or in intracellular oxidant production, but had significant increase in lung myeloperoxidase compared to the RA group. Apoptosis increased significantly only in the O2+NO group. The O2 group showed significantly increased lung SOD and catalase activity compared to the RA group, whereas the RA+NO and O2+NO groups did not. We conclude that inhaled NO at 50 ppm decreases neutrophil CD18 expression as well as intracellular oxidant production. However, this effect does not impact lung neutrophil accumulation during concurrent hyperoxia. The combination of NO and O2 exposure produces an increase in lung apoptosis. Finally, NO may prevent upregulation of SOD and catalase activity during hyperoxia, potentially increasing injury.


Asunto(s)
Hiperoxia/patología , Pulmón/efectos de los fármacos , Óxido Nítrico/farmacología , Oxígeno/farmacología , Administración por Inhalación , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales , Apoptosis , Antígenos CD18/análisis , Catalasa/análisis , ADN/análisis , Femenino , Citometría de Flujo , Hiperoxia/inducido químicamente , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Inflamación , Pulmón/enzimología , Pulmón/patología , Masculino , Neutrófilos/inmunología , Óxido Nítrico/administración & dosificación , Oxígeno/administración & dosificación , Oxígeno/efectos adversos , Peroxidasa/análisis , Distribución Aleatoria , Superóxido Dismutasa/análisis , Porcinos , Acetato de Tetradecanoilforbol/química
2.
Biol Neonate ; 75(3): 199-209, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9925907

RESUMEN

This study was undertaken to examine the combined effect of nitric oxide (NO) and hyperoxia on lung edema and Na,K-ATPase expression. Newborn piglets were exposed to room air (FiO2 = 0.21), room air plus 50 ppm NO, hyperoxia (FiO2 >/= 0.96) or to hyperoxia plus 50 ppm NO for 4-5 days. Animals exposed to NO in room air experienced only a slight decrease in Na,K-ATPase alpha subunit protein level. Hyperoxia, in the absence of NO, induced both the mRNA and the protein level of Na,K-ATP-ase alpha subunit and significantly increased wet lung weight, extravascular lung water, and alveolar permeability. NO in hyperoxia decreased the hyperoxic-mediated induction of Na,K-ATPase alpha subunit mRNA and protein while wet lung weight, extravascular lung water, and alveolar permeability remained elevated. These results suggest that 50 ppm of inhaled NO may not improve hyperoxic-induced lung injury and may interfere with the expression of Na,K-ATPase which constitutes a part of the cellular defense mechanism against oxygen toxicity.


Asunto(s)
Hiperoxia/complicaciones , Óxido Nítrico/farmacología , Terapia por Inhalación de Oxígeno/efectos adversos , Edema Pulmonar/etiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Proteínas Sanguíneas/metabolismo , Northern Blotting , Western Blotting , Lavado Broncoalveolar , Cartilla de ADN/química , ADN Complementario/química , Electroforesis en Gel de Agar , Electroforesis en Gel de Poliacrilamida , Femenino , Regulación Enzimológica de la Expresión Génica , Hiperoxia/enzimología , Masculino , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Distribución Aleatoria , ATPasa Intercambiadora de Sodio-Potasio/genética , Porcinos
3.
Am J Perinatol ; 16(9): 497-501, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10774767

RESUMEN

Exhaled gas from mechanically ventilated preterm infants was found to have similar oxidant concentrations, regardless of lung disease, leading to the hypothesis that wall outlet gases were an oxidant source. Oxidants in compressed room air and oxygen from wall outlets were assessed in three hospitals. Samples were collected by flowing wall outlet gas through a heated humidifier and an ice-packed condenser. Nitric oxide (NO) was measured in intensive care room air and in compressed air with and without a charcoal filter using a Sievers NOA280 nitric oxide analyzer (Boulder, CO). Oxidants were measured by spectrophotometry and expressed as nMol equivalents of H2O2/mL. The quantity of oxidant was also expressed as amount of Vitamin C (nMol/mL) added until the oxidant was nondetectable. This quantity of Vitamin C was also expressed in Trolox Equivalent Antioxidant Capacity (TEAC) units (mMol/L). Free and total chlorine were measured with a Chlorine Photometer. Oxidants were not found in compressed oxygen and were only found in compressed air when the compression method used tap water. At a compressed room air gas flow of 1.5 L/min, the total volume of condensate was 20.2 +/- 1 mL/hr. The oxidant concentration was 1.52 +/- 0.09 nMol/mL equivalents of H2O2/mL of sample and 30.8 +/- 1.2 nMol/hr; 17.9% of that found in tap water. Oxidant reduction required 2.05 +/-0.12 nMol/mL vitamin C, (1.78 +/- 0.1 x 10(-3) TEAC units). Free and total chlorine in tap water were 0.3 +/- 0.02 mg/mL and 2.9 +/- 0.002 mg/mL, respectively. Outlet gas contained 0.4 +/- 0.06 mg/mL and 0.07 + 0.01 mg/mL total and free chlorine, respectively; both 14% of tap water. When a charcoal filter was installed in the hospital with oxidants in compressed air, oxidants were completely removed. Nursery room air contained 12.4 +/- 0.5 ppb NO; compressed wall air without a charcoal filter, 8.1 +/- 0.1 ppb and compressed air with a charcoal filter 12.5 +/- 0.5 ppb. A charcoal filter does not remove NO. (Table 3) We recommend that all compressed air methods using tap water have charcoal filters at the compression site and the gases be assessed periodically for oxidants.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aire/análisis , Monitoreo del Ambiente , Depuradores de Radicales Libres/análisis , Unidades de Cuidados Intensivos , Óxido Nítrico/análisis , Oxidantes/análisis , Administración por Inhalación , Adulto , Presión del Aire , Niño , Preescolar , Depuradores de Radicales Libres/administración & dosificación , Humanos , Recién Nacido , Kansas , Óxido Nítrico/administración & dosificación , Oxidantes/administración & dosificación , Oxígeno/administración & dosificación , Respiración Artificial , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...