Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 78(5): 894-905, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315570

RESUMEN

Diverse clades of fishes adapted to feeding on the benthos repeatedly converge on steep craniofacial profiles and shorter, wider heads. But in an incipient radiation, to what extent is this morphological evolution measurable and can we distinguish the relative genetic vs. plastic effects? We use the Trinidadian guppy (Poecilia reticulata) to test the repeatability of adaptation and the alignment of genetic and environmental effects shaping poecilid craniofacial morphology. We compare wild-caught and common garden lab-reared fish to quantify the genetic and plastic components of craniofacial morphology across 4 populations from 2 river drainage systems (n = 56 total). We first use micro-computed tomography to capture 3D morphology, then place both landmarks and semilandmarks to perform size-corrected 3D morphometrics and quantify shape space. We find a measurable, significant, and repeatable divergence in craniofacial shape between high-predation invertivore and low-predation detritivore populations. As predicted from previous examples of piscine adaptive trophic divergence, we find increases in head slope and craniofacial compression among the benthic detritivore foragers. Furthermore, the effects of environmental plasticity among benthic detritivores produce exaggerated craniofacial morphological change along a parallel axis to genetic morphological adaptation from invertivore ancestors. Overall, many of the major patterns of benthic-limnetic craniofacial evolution appear convergent among disparate groups of teleost fishes.


Asunto(s)
Evolución Biológica , Poecilia , Cráneo , Animales , Poecilia/anatomía & histología , Poecilia/genética , Poecilia/fisiología , Cráneo/anatomía & histología , Microtomografía por Rayos X , Cadena Alimentaria , Conducta Predatoria
2.
Sci Adv ; 9(34): eadf3915, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611099

RESUMEN

An outstanding question in biology is to what extent convergent evolution produces similar, but not necessarily identical, complex phenotypic solutions. The placenta is a complex organ that repeatedly evolved in the livebearing fish family Poeciliidae. Here, we apply comparative approaches to test whether evolution has produced similar or different placental phenotypes in the Poeciliidae and to what extent these phenotypes correlate with convergence at the molecular level. We show the existence of two placental phenotypes characterized by distinctly different anatomical adaptations (divergent evolution). Furthermore, each placental phenotype independently evolved multiple times across the family, providing evidence for repeated convergence. Moreover, our comparative genomic analysis revealed that the genomes of species with different placentas are evolving at a different pace. Last, we show that the two placental phenotypes correlate with two previously described contrasting life-history optima. Our results argue for high evolvability (both divergent and convergent) of the placenta within a group of closely related species in a single family.


Asunto(s)
Aclimatación , Placenta , Femenino , Embarazo , Animales , Peces/genética , Fenotipo
3.
Proc Biol Sci ; 290(2000): 20222492, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37282538

RESUMEN

Coloration facilitates evolutionary investigations in nature because the interaction between genotype, phenotype and environment is relatively accessible. In a landmark set of studies, Endler addressed this complexity by demonstrating that the evolution of male Trinidadian guppy coloration is shaped by the local balance between selection for mate attractiveness versus crypsis. This became a textbook paradigm for how antagonistic selective pressures may determine evolutionary trajectories in nature. However, recent studies have challenged the generality of this paradigm. Here, we respond to these challenges by reviewing five important yet underappreciated factors that contribute to colour pattern evolution: (i) among-population variation in female preference and correlated variation in male coloration, (ii) differences in how predators versus conspecifics view males, (iii) biased assessment of pigmentary versus structural coloration, (iv) the importance of accounting for multi-species predator communities, and (v) the importance of considering the multivariate genetic architecture and multivariate context of selection and how sexual selection encourages polymorphic divergence. We elaborate these issues using two challenging papers. Our purpose is not to criticize but to point out the potential pitfalls in colour research and to emphasize the depth of consideration necessary for testing evolutionary hypotheses using complex multi-trait phenotypes such as guppy colour patterns.


Asunto(s)
Poecilia , Masculino , Femenino , Animales , Poecilia/genética , Color , Fenotipo , Selección Sexual , Genotipo , Pigmentación/genética , Evolución Biológica
4.
Science ; 380(6642): 309-312, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079663

RESUMEN

When females prefer mates with rare phenotypes, sexual selection can maintain rather than deplete genetic variation. However, there is no consensus on why this widespread and frequently observed preference might evolve and persist. We examine the fitness consequences of female preference for rare male color patterns in a natural population of Trinidadian guppies, using a pedigree that spans 10 generations. We demonstrate (i) a rare male reproductive advantage, (ii) that females that mate with rare males gain an indirect fitness advantage through the mating success of their sons, and (iii) the fitness benefit that females accrue through their "sexy sons" evaporates for their grandsons as their phenotype becomes common. Counter to prevailing theory, we show that female preference can be maintained through indirect selection.


Asunto(s)
Preferencia en el Apareamiento Animal , Poecilia , Selección Sexual , Animales , Femenino , Masculino , Fenotipo , Poecilia/fisiología , Reproducción
5.
Vision (Basel) ; 6(3)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36136749

RESUMEN

Male guppies (Poecilia reticulata) have multiple colored spots and perform courtship displays near the edges of streams in Trinidad in shallow water flowing through rainforest. Depending upon the orientation of the pair, the female sees the male displays against gravel or other stream bed substrates or against the spacelight-the roughly uniform light coming from the water column away from the bank. We observed courting pairs in two adjacent natural streams and noted the directions of each male display. We found that the female sees the male more often against spacelight than against gravel when females either faced the spacelight from the opposite bank or from downstream, or both. Visual modelling using natural substrate reflectances and field light measurements showed higher chromatic contrast of males against spacelight than against substrates independent of the two ambient light environments used during displays, but achromatic contrast depended upon the ambient light habitat. This suggests that courtship involves both chromatic and achromatic contrast. We conclude that the orientation of courting pairs and the ambient light spectrum should be accounted for in studies of mate choice, because the visual background and light affect visibility, and these differ with orientation.

6.
Evol Lett ; 6(2): 149-161, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386829

RESUMEN

Although rapid phenotypic evolution has been documented often, the genomic basis of rapid adaptation to natural environments is largely unknown in multicellular organisms. Population genomic studies of experimental populations of Trinidadian guppies (Poecilia reticulata) provide a unique opportunity to study this phenomenon. Guppy populations that were transplanted from high-predation (HP) to low-predation (LP) environments have been shown to evolve toward the phenotypes of naturally colonized LP populations in as few as eight generations. These changes persist in common garden experiments, indicating that they have a genetic basis. Here, we report results of whole genome variation in four experimental populations colonizing LP sites along with the corresponding HP source population. We examined genome-wide patterns of genetic variation to estimate past demography and used a combination of genome scans, forward simulations, and a novel analysis of allele frequency change vectors to uncover the signature of selection. We detected clear signals of population growth and bottlenecks at the genome-wide level that matched the known history of population numbers. We found a region on chromosome 15 under strong selection in three of the four populations and with our multivariate approach revealing subtle parallel changes in allele frequency in all four populations across this region. Investigating patterns of genome-wide selection in this uniquely replicated experiment offers remarkable insight into the mechanisms underlying rapid adaptation, providing a basis for comparison with other species and populations experiencing rapidly changing environments.

7.
Evolution ; 76(3): 585-604, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35084046

RESUMEN

Life-history phenotypes emerge from clusters of traits that are the product of genes and phenotypic plasticity. If the impact of the environment differs substantially between traits, then life histories might not evolve as a cohesive whole. We quantified the sensitivity of components of the life history to food availability, a key environmental difference in the habitat occupied by contrasting ecotypes, for 36 traits in fast- and slow-reproducing Trinidadian guppies. Our dataset included six putatively independent origins of the slow-reproducing, derived ecotype. Traits varied substantially in plastic and genetic control. Twelve traits were influenced only by food availability (body lengths, body weights), five only by genetic differentiation (interbirth intervals, offspring sizes), 10 by both (litter sizes, reproductive timing), and nine by neither (fat contents, reproductive allotment). Ecotype-by-food interactions were negligible. The response to low food was aligned with the genetic difference between high- and low-food environments, suggesting that plasticity was adaptive. The heterogeneity among traits in environmental sensitivity and genetic differentiation reveals that the components of the life history may not evolve in concert. Ecotypes may instead represent mosaics of trait groups that differ in their rate of evolution.


Asunto(s)
Rasgos de la Historia de Vida , Poecilia , Animales , Ecotipo , Fenotipo , Plásticos , Poecilia/genética
8.
Ecology ; 103(1): e03558, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622952

RESUMEN

Theory predicts that species engaged in intraguild predation (IGP) can only coexist under limited conditions, yet IGP is common in nature. Habitat complexity can promote coexistence by reducing encounter rates, but little information is known about the contribution of differential habitat use. We hypothesized that differential use of alternative habitats promotes coexistence of an intraguild (IG) predator and prey. We evaluated predictions of this hypothesis with an experimental introduction of an IG predator fish into four natural stream communities that previously contained only the IG prey fish. We monitored the development of this IGP over the course of four years to determine how each species used alternative stream habitats. The introduced species preferred pool habitats while the resident species was more evenly distributed across pools and riffles. The density of the resident decreased in the pool habitat preferred by the invader, accompanied by a local increase in the mean of the resident size distribution. Selective predation by the invader on hatchling residents appears to impact the residents' demographic response. The continued recruitment of resident juveniles in riffles, where the introduced species is rare, facilitated the persistence of the resident. This differential use of habitats was not accompanied by a change in the resident's growth rates in either habitat. Our results showed that differential habitat selection and recruitment promoted persistence during an invasion involving IGP, which helps to bridge the gap between theory and observation in explaining coexistence in IGP systems.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Peces , Cadena Alimentaria , Especies Introducidas , Ríos
9.
Oecologia ; 195(4): 1053-1069, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33738525

RESUMEN

The ecological consequences of biological range extensions reflect the interplay between the functional characteristics of the newly arrived species and their recipient ecosystems. Teasing apart the relative contribution of each component is difficult because most colonization events are studied retrospectively, i.e., after a species became established and its consequences apparent. We conducted a prospective experiment to study the ecosystem consequences of a consumer introduction, using whole-stream metabolism as our integrator of ecosystem activity. In four Trinidadian streams, we extended the range of a native fish, the guppy (Poecilia reticulata), by introducing it over barrier waterfalls that historically excluded it from these upper reaches. To assess the context dependence of these range extensions, we thinned the riparian forest canopy on two of these streams to increase benthic algal biomass and productivity. Guppy's range extension into upper stream reaches significantly impacted stream metabolism but the effects depended upon the specific stream into which they had been introduced. Generally, increases in guppy biomass caused an increase in gross primary production (GPP) and community respiration (CR). The effects guppies had on GPP were similar to those induced by increased light level and were larger in strength than the effects stream stage had on CR. These results, combined with results from prior experiments, contribute to our growing understanding of how consumers impact stream ecosystem function when they expand their range into novel habitats. Further study will reveal whether local adaptation, known to occur rapidly in these guppy populations, modifies the ecological consequences of this species introduction.


Asunto(s)
Poecilia , Animales , Ecosistema , Estudios Prospectivos , Estudios Retrospectivos , Ríos
10.
Curr Biol ; 31(9): 2004-2011.e5, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33657405

RESUMEN

How and why complex organs evolve is generally lost to history. The mammalian placenta, for example, was derived from a single common ancestor that lived over 100 million years ago.1-3 Therefore, the selective factors favoring this complex trait remain obscure. Species in the live-bearing fish family Poeciliidae have independently evolved placentas numerous times while retaining closely related non-placental sister species.4-7 This provides the raw material to test alternative hypotheses for the evolution of the placenta. We assemble an extensive species-level dataset on reproductive mode, life histories, and habitat, and then implement phylogenetic comparative methods to test adaptive hypotheses for the evolution of the placenta. We find no consistent family-wide associations between placentation and habitat. However, placental species exhibit significantly reduced reproductive allotment and have a higher likelihood of exhibiting superfetation (the ability to gestate multiple broods at different developmental stages). Both features potentially increase body streamlining and enhance locomotor performance during pregnancy, possibly providing selective advantage in performance-demanding environments such as those with high predation or fast water flow. Furthermore, we found significant interactions between body size and placentation for offspring size and fecundity. Relative to non-placental species, placentation is associated with higher fecundity and smaller offspring size in small-bodied species and lower fecundity and larger offspring size in large-bodied species. This pattern suggests that there may be two phenotypic adaptive peaks, corresponding to two selective optima, associated with placentation: one represented by small-bodied species that have fast life histories, and the second by large-bodied species with slow life histories.


Asunto(s)
Evolución Biológica , Ciprinodontiformes , Placenta , Animales , Tamaño Corporal , Femenino , Filogenia , Embarazo , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA