RESUMEN
This study investigated the renal function of soccer players after an entire game-season. Thirty-five athletes recruited to play for the Macae Futebol Clube were invited for this study, of which 18 athletes completed the entire game season. Blood and 24-hour urine were collected at the beginning (Pre-Season) and the end of the game season (Post-Season). Kidney functions were assessed by calculating the urinary excretion, clearance, and fractional excretion of the selected solutes. Plasma creatinine, sodium, total protein, and osmolality were lower in the Post-Season . In contrast, plasma urea was higher in the Post-Season period. Urinary excretion of urea was reduced while albumin excretion was higher in comparison to Pre-Season. The clearances of creatinine, total proteins, and albumin were higher in the Post-Season period. In accordance, the fractional excretion of albumin increased. On the other hand, the clearance and fractional excretion of urea was lower in the Post-Season period. These results show that soccer-associated exercise throughout the entire game-season induces kidney functions adaptations that may prevent dehydration in these athletes through increased urea reabsorption to conserve water. In addition, this data corroborates to increased glomerular permeability to plasma proteins, such as albumin, that soccer players may experience.
Asunto(s)
Ejercicio Físico , Urea , Humanos , RiñónRESUMEN
This work describes the application of the biosurfactant from Candida bombicola URM 3718 as a meal additive like cupcake. The biosurfactant was produced in a culture medium containing 5% sugar cane molasses, 5% residual soybean oil and 3% corn steep liquor. The surface and interfacial tension of the biosurfactant were 30.790 ± 0.04 mN/m and 0.730 ± 0.05 mN/m, respectively. The yield in isolated biosurfactant was 25 ± 1.02 g/L and the CMC was 0.5 g/L. The emulsions of the isolated biosurfactant with vegetable oils showed satisfactory results. The microphotographs of the emulsions showed that increasing the concentration of biosurfactant decreased the oil droplets, increasing the stability of the emulsions. The biosurfactant was incorporated into the cupcake dessert formulation, replacing 50%, 75% and 100% of the vegetable fat in the standard formulation. Thermal analysis showed that the biosurfactant is stable for cooking cupcakes (180 °C). The biosurfactant proved to be promising for application in foods low in antioxidants and did not show cytotoxic potential in the tested cell lines. Cupcakes with biosurfactant incorporated in their dough did not show significant differences in physical and physical-chemical properties after baking when compared to the standard formulation. In this way, the biosurfactant has potential for application in the food industry as an emulsifier for flour dessert.
RESUMEN
There has been considerable interest in the use of biosurfactants due to the diversity of structures and the possibility of production from a variety of substrates. The potential for industrial applications has been growing, as these natural compounds are tolerant to common processing methods and can compete with synthetic surfactants with regards to the capacity to reduce surface and interfacial tensions as well as stabilise emulsions while offering the advantages of biodegradability and low toxicity. Among biosurfactant-producing microorganisms, some yeasts present no risks of toxicity or pathogenicity, making them ideal for use in food formulations. Indeed, the use of these biomolecules in foods has attracted industrial interest due to their properties as emulsifiers and stabilizers of emulsions. Studies have also demonstrated other valuable properties, such as antioxidant and antimicrobial activity, enabling the aggregation of greater value to products and the avoidance of contamination both during and after processing. All these characteristics allow biosurfactants to be used as additives and versatile ingredients for the processing of foods. The present review discusses the potential application of biosurfactants as emulsifying agents in food formulations, such as salad dressing, bread, cakes, cookies, and ice cream. The antioxidant, antimicrobial and anti-adhesive properties of these biomolecules are also discussed, demonstrating the need for further studies to make the use of the natural compounds viable in this expanding sector.
Asunto(s)
Emulsionantes , Industria de Alimentos , Tensoactivos , Antiinfecciosos , Antioxidantes , Calidad de los AlimentosRESUMEN
Peripheral nerve injury (PNI) can lead to sensory and/or motor impairment. As a treatment photobiomodulation (PBM) has demonstrated positive effects in terms of the maintenance of muscle activation and trophism. Wistar rats were divided into five groups: control, injury, injury + PBMn (irradiation over injured nerve), injury + PBMm (irradiation over affected muscle) and injury + PBMnm (irradiation over nerve and muscle). The left sciatic nerve was submitted to a crushing injury. Treatment was administered with low-level laser (780 nm, 0.04 cm2 , 1 W cm-2 , 3.2 J) over the injured nerve and/or the tibialis anterior muscle. The effects of PBM were favorable on muscle morphology and gene expression of calcineurin, myogenin and acetylcholine receptors. PBM led to an acceleration on muscle repair process, and effects were more evident in 2 weeks after PNI. Thus, PBM is indicated for the area over both the injured nerve and the affected muscle.
Asunto(s)
Terapia por Luz de Baja Intensidad , Traumatismos de los Nervios Periféricos/terapia , Animales , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Nervio Ciático/efectos de la radiaciónRESUMEN
Macrophages play a very important role in the conduction of several regenerative processes mainly due to their plasticity and multiple functions. In the muscle repair process, while M1 macrophages regulate the inflammatory and proliferative phases, M2 (anti-inflammatory) macrophages direct the differentiation and remodelling phases, leading to tissue regeneration. The aim of this study was to evaluate the effect of red and near infrared (NIR) photobiomodulation (PBM) on macrophage phenotypes and correlate these findings with the repair process following acute muscle injury. Wistar rats were divided into 4 groups: control; muscle injury; muscle injury + red PBM; and muscle injury + NIR PBM. After 2, 4 and 7 days, the tibialis anterior muscle was processed for analysis. Macrophages phenotypic profile was evaluated by immunohistochemistry and correlated with the different stages of the skeletal muscle repair by the qualitative and quantitative morphological analysis as well as by the evaluation of IL-6, TNF-α and TGF-ß mRNA expression. Photobiomodulation at both wavelengths was able to decrease the number of CD68+ (M1) macrophages 2 days after muscle injury and increase the number of CD163+ (M2) macrophages 7 days after injury. However, only NIR treatment was able to increase the number of CD206+ M2 macrophages (Day 2) and TGF-ß mRNA expression (Day 2, 4 and 7), favouring the repair process more expressivelly. Treatment with PBM was able to modulate the inflammation phase, optimize the transition from the inflammatory to the regeneration phase (mainly with NIR light) and improve the final step of regeneration, enhancing tissue repair.
Asunto(s)
Terapia por Luz de Baja Intensidad , Desarrollo de Músculos/efectos de la radiación , Músculos/efectos de la radiación , Regeneración/efectos de la radiación , Animales , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Diferenciación Celular/efectos de la radiación , Humanos , Macrófagos/patología , Macrófagos/efectos de la radiación , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/lesiones , Músculo Esquelético/efectos de la radiación , Músculos/lesiones , Músculos/patología , Ratas , Receptores de Superficie Celular/genética , Cicatrización de Heridas/fisiología , Cicatrización de Heridas/efectos de la radiaciónRESUMEN
OBJECTIVE: The aim of the present study was to evaluate the effects of myoblast inoculation in combination with photobiomodulation therapy (PBMT) on skeletal muscle tissue following injury. MATERIALS AND METHODS: Sixty-five Wistar rats were divided into five groups: Control-animals not submitted to any procedure; Injury-cryoinjury of the tibialis anterior muscle; HBSS-animals submitted to cryoinjury and intramuscular Hank's Balanced Salt Solution; Injury + Cells-animals submitted to cryoinjury, followed by myogenic precursor cells (C2C12) transplantation; Injury + Cells + LLLT-animals submitted to cryoinjury, followed by myogenic precursor cells (C2C12) transplantation and PBMT (780 nm, 40 mW, 3.2 J in 8 points). The periods analyzed were 1, 3, and 7 days. The tibialis anterior muscle was harvest for histological analysis, collagen analysis, and immunolabeling of macrophages. RESULTS: No differences were found between the HBSS group and injury group. The Injury + Cells group exhibited an increase of inflammatory cells and immature fibers as well as a decrease in the number of macrophages on Day 1. The Injury + Cells + LLLT group exhibited a decrease in myonecrosis and inflammatory infiltrate at 7 days, but an increase in inflammatory infiltrate at 1 and 3 days as well as an increase in blood vessels at 3 and 7 days, an increase in macrophages at 3 days and better collagen organization at 7 days. CONCLUSION: Cell transplantation combined with PBMT led to an increase in the number of blood vessels, a reduction in myonecrosis and total inflammatory cells as well as better organization of collagen fibers during the skeletal muscle repair process. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
RESUMEN
Ribeiro, BG, Morales, AP, Sampaio-Jorge, F, Barth, T, de Oliveira, MBC, Coelho, GMdO, and Leite, TC. Caffeine attenuates decreases in leg power without increased muscle damage. J Strength Cond Res 30(8): 2354-2360, 2016-Caffeine ingestion has been shown to be an effective ergogenic aid in several sports. Caffeine administration may increase exercise capacity, which could lead to a greater degree of muscle damage after exercise. This was a randomized, double-blind, placebo-controlled crossover study. Six male handball athletes ingested placebo (PLA) or caffeine (CAF) (6 mg·kg body mass) capsules on 2 different occasions. Sixty minutes after ingestion of the capsules, serum CAF levels were evaluated. Thereafter, all participants performed a protocol of vertical jumps (VJs). The protocol consisted of 4 sets of 30 seconds of continuous VJs with 60 seconds of recovery between sets. Blood lactate (LAC) and creatine kinase (CK) levels were determined before and after the protocol. We found significant differences in serum CAF levels between PLA (0.09 ± 0.18 µg·ml) vs. CAF (6.59 ± 4.44 µg·ml) (p < 0.001). Caffeine elicited a 5.23% (p ≤ 0.05) improvement in the leg power compared with PLA. The CAF trial displayed higher LAC (p ≤ 0.05) compared with PLA (6.26 ± 2.01 vs. 4.39 ± 2.42 mmol·L, respectively) after protocol of VJs, whereas no difference in CK was observed between trials (p > 0.05). These results indicate that immediate ingestion of CAF (6 mg·kg body weight) can reduce the level of muscle fatigue and preserve leg power during the test, possibly resulting in increase in LAC. There was no increase in muscle damage, which indicates that immediate administration of (6 mg·kg body weight) CAF is safe. Thus, nutritional interventions with CAF could help athletes withstand a greater physiological overload during high-intensity training sessions. The results of this study would be applicable to sports and activities that require repetitive leg power.
Asunto(s)
Cafeína/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Ejercicio Físico/fisiología , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Adulto , Atletas , Cafeína/sangre , Creatina Quinasa/sangre , Estudios Cruzados , Método Doble Ciego , Humanos , Ácido Láctico/sangre , Pierna/fisiología , Masculino , Fatiga Muscular/fisiología , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Adulto JovenRESUMEN
The effect of fish-oil supplementation (FO-S) on the immune responses of elite swimmers was investigated. In a randomized placebo-controlled trial, swimmers received either fish-oil capsules (n=10) containing long chain polyunsaturated fatty acids (FA) of n-3 (LCPUFA n-3) or placebo capsules (n=10), both for 6 weeks. Plasma FA, immunological markers, insulin and cortisol were evaluated. The FO-S resulted in an increase in LCPUFA n-3 and a decrease in arachidonic n-6 FA in plasma and a reduction in the production of interferon-gamma by cultured cells. A reduction in the production of tumor necrosis factor-alpha was observed in both groups. An increase in interleukin-2 production and no significant difference in interleukin-4 were also observed. FO-S was able to attenuate the exercise-induced increases in prostaglandin E2. Circulating concentrations of insulin did not change, while cortisol and glucose showed increase after the study period. These results suggest that FO-S influence exercise-associated immune responses in competitive swimmers.