Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(1): e1010015, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025870

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


Asunto(s)
Atrofia Muscular/patología , Distrofia Muscular Oculofaríngea/patología , Proteína I de Unión a Poli(A)/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Regulación de la Expresión Génica , Pruebas Genéticas , Humanos , Leupeptinas/farmacología , Leupeptinas/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Distrofia Muscular Oculofaríngea/tratamiento farmacológico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutación , Proteína I de Unión a Poli(A)/química , Prueba de Estudio Conceptual , Agregado de Proteínas/efectos de los fármacos
2.
Environ Microbiol ; 23(4): 2293-2314, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538395

RESUMEN

The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.


Asunto(s)
Botrytis , Proteómica , Biomasa , Botrytis/genética , Proteínas Fúngicas/genética , Enfermedades de las Plantas , Plantas
3.
Fungal Genet Biol ; 57: 76-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23810898

RESUMEN

Magnaporthe oryzae is a fungal plant pathogen of many grasses including rice. Since arabinoxylan is one of the major components of the plant cell wall of grasses, M. oryzae is likely to degrade this polysaccharide for supporting its growth in infected leaves. D-Xylose is released from arabinoxylan by fungal depolymerising enzymes and catabolized through the pentose pathway. The expression of genes involved in these pathways is under control of the transcriptional activator XlnR/Xlr1, conserved among filamentous ascomycetes. In this study, we identified M. oryzae genes involved in the pentose catabolic pathway (PCP) and their function during infection, including the XlnR homolog, XLR1, through the phenotypic analysis of targeted null mutants. Growth of the Δxlr1 strain was reduced on D-xylose and xylan, but unaffected on L-arabinose and arabinan. A strong reduction of PCP gene expression was observed in the Δxlr1 strain on D-xylose and L-arabinose. However, there was no significant difference in xylanolytic and cellulolytic enzyme activities between the Δxlr1 mutant and the reference strain. These data demonstrate that XLR1 encodes the transcriptional activator of the PCP in M. oryzae, but does not appear to play a role in the regulation of the (hemi-) cellulolytic system in this fungus. This indicates only partial similarity in function between Xlr1 and A. niger XlnR. The deletion mutant of D-xylulose kinase encoding gene (XKI1) is clearly unable to grow on either D-xylose or L-arabinose and showed reduced growth on xylitol, L-arabitol and xylan. Δxki1 displayed an interesting molecular phenotype as it over-expressed other PCP genes as well as genes encoding (hemi-) cellulolytic enzymes. However, neither Δxlr1 nor Δxki1 showed significant differences in their pathogeny on rice and barley compared to the wild type, suggesting that D-xylose catabolism is not required for fungal growth in infected leaves.


Asunto(s)
Proteínas Fúngicas/genética , Magnaporthe/metabolismo , Redes y Vías Metabólicas , Pentosas/metabolismo , Arabinosa/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transcripción Genética , Xilanos/metabolismo , Xilosa/metabolismo
4.
Plant Cell ; 25(4): 1463-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23548743

RESUMEN

Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer-fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain.


Asunto(s)
Proteínas Fúngicas/genética , Magnaporthe/genética , Oryza/genética , Proteínas de Plantas/genética , Empalme Alternativo , Secuencia de Aminoácidos , Sitios de Unión/genética , Resistencia a la Enfermedad/genética , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Immunoblotting , Magnaporthe/metabolismo , Magnaporthe/fisiología , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
FEBS Lett ; 587(9): 1346-52, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23499935

RESUMEN

A gene (MoPRD1), related to xylose reductases, was identified in Magnaporthe oryzae. Recombinant MoPRD1 displays its highest specific reductase activity toward L-arabinose and D-xylose. Km and Vmax values using L-arabinose and D-xylose are similar. MoPRD1 was highly overexpressed 2-8h after transfer of mycelium to D-xylose or L-arabinose, compared to D-glucose. Therefore, we conclude that MoPDR1 is a novel pentose reductase, which combines the activities and expression patterns of fungal L-arabinose and D-xylose reductases. Phylogenetic analysis shows that PRD1 defines a novel family of pentose reductases related to fungal D-xylose reductases, but distinct from fungal L-arabinose reductases. The presence of PRD1, L-arabinose and D-xylose reductases encoding genes in a given species is variable and likely related to their life style.


Asunto(s)
Magnaporthe/metabolismo , Oxidorreductasas/metabolismo , Pentosas/metabolismo , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Magnaporthe/enzimología , Magnaporthe/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Filogenia , Especificidad de la Especie
6.
Plant J ; 74(1): 1-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23279638

RESUMEN

Effector proteins are key elements in plant-fungal interactions. The rice blast fungus Magnaporthe oryzae secretes numerous effectors that are suspected to be translocated inside plant cells. However, their cellular targets and the mechanisms of translocation are still unknown. Here, we have identified the open reading frame (ORF3) corresponding to the M. oryzae avirulence gene AVR1-CO39 that interacts with the rice resistance gene Pi-CO39 and encodes a small secreted protein without homology to other proteins. We demonstrate that AVR1-CO39 is specifically expressed and secreted at the plant-fungal interface during the biotrophic phase of infection. Live-cell imaging with M. oryzae transformants expressing a translational fusion between AVR1-CO39 and the monomeric red fluorescent protein (mRFP) indicated that AVR1-CO39 is translocated into the cytoplasm of infected rice cells. Transient expression of an AVR1-CO39 isoform without a signal peptide in rice protoplasts triggers a Pi-CO39-specific hypersensitive response, suggesting that recognition of AVR1-CO39 by the Pi-CO39 gene product occurs in the cytoplasm of rice cells. The native AVR1-CO39 protein enters the secretory pathway of rice protoplasts as demonstrated by the ER localization of AVR1-CO39:mRFP:HDEL translational fusions, and is correctly processed as shown by Western blotting. However, this secreted AVR1-CO39 isoform triggers a Pi-CO39-specific hypersensitive response and accumulates inside rice protoplasts as shown by Western blotting and localization of AVR1-CO39:mRFP translational fusions. This indicates that AVR1-CO39 is secreted by rice protoplasts and re-enters into the cytoplasm by unknown mechanisms, suggesting that translocation of AVR1-CO39 into rice cells occurs independently of fungal factors.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Transporte de Proteínas , Secuencia de Aminoácidos , Secuencia de Bases , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína , Protoplastos/metabolismo
7.
Plant J ; 72(2): 199-211, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22612335

RESUMEN

Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up-regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro-grafting a pho1 shoot scion onto wild-type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild-type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re-established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Luz , Mutación , Especificidad de Órganos , Fenotipo , Fosfatos/análisis , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Xilema/efectos de los fármacos , Xilema/genética , Xilema/fisiología , Xilema/efectos de la radiación
8.
Plant Cell ; 22(7): 2495-508, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20675574

RESUMEN

Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin beta-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex. The tig1 deletion mutant was nonpathogenic and defective in conidiogenesis. It had an increased sensitivity to oxidative stress and failed to develop invasive hyphae in plant cells. Using affinity purification and coimmunoprecipitation assays, we identified several Tig1-associated proteins, including two HDACs that are homologous to components of the yeast Set3 complex. Functional analyses revealed that TIG1, SET3, SNT1, and HOS2 were core components of the Tig1 complex in M. oryzae. The set3, snt1, and hos2 deletion mutants displayed similar defects as those observed in the tig1 mutant, but deletion of HST1 or HOS4 had no detectable phenotypes. Deletion of any of these core components of the Tig1 complex resulted in a significant reduction in HDAC activities. Our results showed that TIG1, like its putative yeast and mammalian orthologs, is one component of a conserved HDAC complex that is required for infectious growth and conidiogenesis in M. oryzae and highlighted that chromatin modification is an essential regulatory mechanism during plant infection.


Asunto(s)
Histona Desacetilasas/metabolismo , Magnaporthe/crecimiento & desarrollo , Oryza/microbiología , Cromatografía de Afinidad , Genes Fúngicos , Peróxido de Hidrógeno/metabolismo , Magnaporthe/enzimología , Magnaporthe/genética , Magnaporthe/patogenicidad , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Virulencia
9.
BMC Microbiol ; 9: 166, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19674460

RESUMEN

BACKGROUND: L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. RESULTS: Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. CONCLUSION: These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH.


Asunto(s)
Sustitución de Aminoácidos , Aspergillus niger/enzimología , Sorbitol/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Aspergillus niger/genética , D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , ADN de Hongos/genética , Genes Fúngicos , L-Iditol 2-Deshidrogenasa/genética , L-Iditol 2-Deshidrogenasa/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Análisis de Secuencia de ADN , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética
10.
Plant Physiol ; 147(2): 696-706, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18434606

RESUMEN

Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine. Surprisingly, induction of AtPHO1;H10 by OPDA was dependent on the presence of CORONATINE INSENSITIVE1 (COI1). The induction of AtPHO1;H10 expression by wounding and dehydration was dependent on COI1 and was comparable in both the wild type and the OPDA reductase 3-deficient (opr3) mutant. In contrast, induction of AtPHO1;H10 expression by exogenous abscisic acid (ABA) was independent of the presence of either OPDA or COI1, but was strongly decreased in the ABA-insensitive mutant abi1-1. The involvement of the ABA pathway in regulating AtPHO1;H10 was distinct between wounding and dehydration, with induction of AtPHO1;H10 by wounding being comparable to wild type in the ABA-deficient mutant aba1-3 and abi1-1, whereas a strong reduction in AtPHO1;H10 expression occurred in aba1-3 and abi1-1 following dehydration. Together, these results reveal that OPDA can modulate gene expression via COI1 in a manner distinct from JA, and independently from ABA. Furthermore, the implication of the ABA pathway in coregulating AtPHO1;H10 expression is dependent on the abiotic stress applied, being weak under wounding but strong upon dehydration.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Ciclopentanos/farmacología , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Oxilipinas/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA