Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(1): 241-250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172625

RESUMEN

Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.


Asunto(s)
Escherichia coli , ARN Guía de Sistemas CRISPR-Cas , Humanos , Escherichia coli/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN/genética , Perfilación de la Expresión Génica
2.
Nat Genet ; 55(8): 1370-1380, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37430091

RESUMEN

How enhancers control target gene expression over long genomic distances remains an important unsolved problem. Here we investigated enhancer-promoter communication by integrating data from nucleosome-resolution genomic contact maps, nascent transcription and perturbations affecting either RNA polymerase II (Pol II) dynamics or the activity of thousands of candidate enhancers. Integration of new Micro-C experiments with published CRISPRi data demonstrated that enhancers spend more time in close proximity to their target promoters in functional enhancer-promoter pairs compared to nonfunctional pairs, which can be attributed in part to factors unrelated to genomic position. Manipulation of the transcription cycle demonstrated a key role for Pol II in enhancer-promoter interactions. Notably, promoter-proximal paused Pol II itself partially stabilized interactions. We propose an updated model in which elements of transcriptional dynamics shape the duration or frequency of interactions to facilitate enhancer-promoter communication.


Asunto(s)
Elementos de Facilitación Genéticos , ARN Polimerasa II , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Transcripción Genética
3.
Nat Commun ; 14(1): 1753, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990976

RESUMEN

During meiotic prophase I, spermatocytes must balance transcriptional activation with homologous recombination and chromosome synapsis, biological processes requiring extensive changes to chromatin state. We explored the interplay between chromatin accessibility and transcription through prophase I of mammalian meiosis by measuring genome-wide patterns of chromatin accessibility, nascent transcription, and processed mRNA. We find that Pol II is loaded on chromatin and maintained in a paused state early during prophase I. In later stages, paused Pol II is released in a coordinated transcriptional burst mediated by the transcription factors A-MYB and BRDT, resulting in ~3-fold increase in transcription. Transcriptional activity is temporally and spatially segregated from key steps of meiotic recombination: double strand breaks show evidence of chromatin accessibility earlier during prophase I and at distinct loci from those undergoing transcriptional activation, despite shared chromatin marks. Our findings reveal mechanisms underlying chromatin specialization in either transcription or recombination in meiotic cells.


Asunto(s)
Meiosis , ARN Polimerasa II , Animales , Masculino , Cromatina/genética , Cromosomas , Regulación de la Expresión Génica , Mamíferos/genética , Meiosis/genética , ARN Polimerasa II/genética , Espermatocitos , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Proteínas Nucleares/metabolismo
4.
Res Sq ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993251

RESUMEN

Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. We found that unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites. This proto-paused-like state transitioned to a longer, focused pause in derived metazoans which coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF reverts the mammalian focal pause to a proto-pause-like state and compromises transcriptional activation for a set of heat shock genes. Collectively, this work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.

5.
BMC Cancer ; 23(1): 138, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765275

RESUMEN

BACKGROUND: Rearranged during transfection (RET) tyrosine kinase signaling has been previously implicated in endocrine resistant breast cancer, however the mechanism by which this signaling cascade promotes resistance is currently not well described. We recently reported that glial cell-derived neurotrophic factor (GDNF)-RET signaling appears to promote a positive feedback loop with the transcription factor early growth response 1 (EGR1). Here we investigate the mechanism behind this feedback loop and test the hypothesis that GDNF-RET signaling forms a regulatory loop with EGR1 to upregulate cyclin D1 (CCND1) transcription, leading to cell cycle progression and tamoxifen resistance. METHODS: To gain a better understanding of the GDNF-RET-EGR1 resistance mechanism, we studied the GDNF-EGR1 positive feedback loop and the role of GDNF and EGR1 in endocrine resistance by modulating their transcription levels using CRISPR-dCAS9 in tamoxifen sensitive (TamS) and tamoxifen resistant (TamR) MCF-7 cells. Additionally, we performed kinetic studies using recombinant GDNF (rGDNF) treatment of TamS cells. Finally, we performed cell proliferation assays using rGDNF, tamoxifen (TAM), and Palbociclib treatments in TamS cells. Statistical significance for qPCR and chromatin immunoprecipitation (ChIP)-qPCR experiments were determined using a student's paired t-test and statistical significance for the cell viability assay was a one-way ANOVA. RESULTS: GDNF-RET signaling formed a positive feedback loop with EGR1 and also downregulated estrogen receptor 1 (ESR1) transcription. Upregulation of GDNF and EGR1 promoted tamoxifen resistance in TamS cells and downregulation of GDNF promoted tamoxifen sensitivity in TamR cells. Additionally, we show that rGDNF treatment activated GDNF-RET signaling in TamS cells, leading to recruitment of phospho-ELK-1 to the EGR1 promoter, upregulation of EGR1 mRNA and protein, binding of EGR1 to the GDNF and CCND1 promoters, increased GDNF protein expression, and subsequent upregulation of CCND1 mRNA levels. We also show that inhibition of cyclin D1 with Palbociclib, in the presence of rGDNF, decreases cell proliferation and resensitizes cells to TAM. CONCLUSION: Outcomes from these studies support the hypotheses that GDNF-RET signaling forms a positive feedback loop with the transcription factor EGR1, and that GDNF-RET-EGR1 signaling promotes endocrine resistance via signaling to cyclin D1. Inhibition of components of this signaling pathway could lead to therapeutic insights into the treatment of endocrine resistant breast cancer.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Tamoxifeno , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Retroalimentación , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cinética , ARN Mensajero , Transducción de Señal , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Factores de Transcripción , Humanos
6.
Genes Dev ; 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35981753

RESUMEN

Promoter-proximal RNA Pol II pausing is a critical step in transcriptional control. Pol II pausing has been predominantly studied in tissue culture systems. While Pol II pausing has been shown to be required for mammalian development, the phenotypic and mechanistic details of this requirement are unknown. Here, we found that loss of Pol II pausing stalls pluripotent state transitions within the epiblast of the early mouse embryo. Using Nelfb -/- mice and a NELFB degron mouse pluripotent stem cell model, we show that embryonic stem cells (ESCs) representing the naïve state of pluripotency successfully initiate a transition program but fail to balance levels of induced and repressed genes and enhancers in the absence of NELF. We found an increase in chromatin-associated NELF during transition from the naïve to later pluripotent states. Overall, our work defines the acute and long-term molecular consequences of NELF loss and reveals a role for Pol II pausing in the pluripotency continuum as a modulator of cell state transitions.

7.
Elife ; 112022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775732

RESUMEN

How DNA sequence affects the dynamics and position of RNA Polymerase II (Pol II) during transcription remains poorly understood. Here, we used naturally occurring genetic variation in F1 hybrid mice to explore how DNA sequence differences affect the genome-wide distribution of Pol II. We measured the position and orientation of Pol II in eight organs collected from heterozygous F1 hybrid mice using ChRO-seq. Our data revealed a strong genetic basis for the precise coordinates of transcription initiation and promoter proximal pause, allowing us to redefine molecular models of core transcriptional processes. Our results implicate DNA sequence, including both known and novel DNA sequence motifs, as key determinants of the position of Pol II initiation and pause. We report evidence that initiation site selection follows a stochastic process similar to Brownian motion along the DNA template. We found widespread differences in the position of transcription termination, which impact the primary structure and stability of mature mRNA. Finally, we report evidence that allelic changes in transcription often affect mRNA and ncRNA expression across broad genomic domains. Collectively, we reveal how DNA sequences shape core transcriptional processes at single nucleotide resolution in mammals.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Mamíferos/genética , Ratones , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Sitio de Iniciación de la Transcripción
8.
Cancer Discov ; 12(7): 1782-1803, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35443279

RESUMEN

SETD2 is the sole histone methyltransferase responsible for H3K36me3, with roles in splicing, transcription initiation, and DNA damage response. Homozygous disruption of SETD2 yields a tumor suppressor effect in various cancers. However, SETD2 mutation is typically heterozygous in diffuse large B-cell lymphomas. Here we show that heterozygous Setd2 deficiency results in germinal center (GC) hyperplasia and increased competitive fitness, with reduced DNA damage checkpoint activity and apoptosis, resulting in accelerated lymphomagenesis. Impaired DNA damage sensing in Setd2-haploinsufficient germinal center B (GCB) and lymphoma cells associated with increased AICDA-induced somatic hypermutation, complex structural variants, and increased translocations including those activating MYC. DNA damage was selectively increased on the nontemplate strand, and H3K36me3 loss was associated with greater RNAPII processivity and mutational burden, suggesting that SETD2-mediated H3K36me3 is required for proper sensing of cytosine deamination. Hence, Setd2 haploinsufficiency delineates a novel GCB context-specific oncogenic pathway involving defective epigenetic surveillance of AICDA-mediated effects on transcribed genes. SIGNIFICANCE: Our findings define a B cell-specific oncogenic effect of SETD2 heterozygous mutation, which unleashes AICDA mutagenesis of nontemplate strand DNA in the GC reaction, resulting in lymphomas with heavy mutational burden. GC-derived lymphomas did not tolerate SETD2 homozygous deletion, pointing to a novel context-specific therapeutic vulnerability. This article is highlighted in the In This Issue feature, p. 1599.


Asunto(s)
Linfocitos B , Citidina Desaminasa , Centro Germinal , Haploinsuficiencia , N-Metiltransferasa de Histona-Lisina , Hipermutación Somática de Inmunoglobulina , Citidina Desaminasa/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Homocigoto , Humanos , Eliminación de Secuencia
9.
Nat Genet ; 54(3): 295-305, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35273399

RESUMEN

The role of histone modifications in transcription remains incompletely understood. Here, we examine the relationship between histone modifications and transcription using experimental perturbations combined with sensitive machine-learning tools. Transcription predicted the variation in active histone marks and complex chromatin states, like bivalent promoters, down to single-nucleosome resolution and at an accuracy that rivaled the correspondence between independent ChIP-seq experiments. Blocking transcription rapidly removed two punctate marks, H3K4me3 and H3K27ac, from chromatin indicating that transcription is required for active histone modifications. Transcription was also required for maintenance of H3K27me3, consistent with a role for RNA in recruiting PRC2. A subset of DNase-I-hypersensitive sites were refractory to prediction, precluding models where transcription initiates pervasively at any open chromatin. Our results, in combination with past literature, support a model in which active histone modifications serve a supportive, rather than an essential regulatory, role in transcription.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Cromatina/genética , Código de Histonas/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Procesamiento Proteico-Postraduccional/genética
10.
J Immunol ; 208(5): 1007-1020, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35181641

RESUMEN

E-protein transcription factors limit group 2 innate lymphoid cell (ILC2) development while promoting T cell differentiation from common lymphoid progenitors. Inhibitors of DNA binding (ID) proteins block E-protein DNA binding in common lymphoid progenitors to allow ILC2 development. However, whether E-proteins influence ILC2 function upon maturity and activation remains unclear. Mice that overexpress ID1 under control of the thymus-restricted proximal Lck promoter (ID1tg/WT) have a large pool of primarily thymus-derived ILC2s in the periphery that develop in the absence of E-protein activity. We used these mice to investigate how the absence of E-protein activity affects ILC2 function and the genomic landscape in response to house dust mite (HDM) allergens. ID1tg/WT mice had increased KLRG1- ILC2s in the lung compared with wild-type (WT; ID1WT/WT) mice in response to HDM, but ID1tg/WT ILC2s had an impaired capacity to produce type 2 cytokines. Analysis of WT ILC2 accessible chromatin suggested that AP-1 and C/EBP transcription factors but not E-proteins were associated with ILC2 inflammatory gene programs. Instead, E-protein binding sites were enriched at functional genes in ILC2s during development that were later dynamically regulated in allergic lung inflammation, including genes that control ILC2 response to cytokines and interactions with T cells. Finally, ILC2s from ID1tg/WT compared with WT mice had fewer regions of open chromatin near functional genes that were enriched for AP-1 factor binding sites following HDM treatment. These data show that E-proteins shape the chromatin landscape during ILC2 development to dictate the functional capacity of mature ILC2s during allergic inflammation in the lung.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Asma/inmunología , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Linfocitos T/inmunología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Alérgenos/inmunología , Animales , Asma/patología , Diferenciación Celular/inmunología , Cromatina/metabolismo , Citocinas/inmunología , Proteínas de Unión al ADN/antagonistas & inhibidores , Femenino , Lectinas Tipo C/genética , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pyroglyphidae/inmunología , Receptores Inmunológicos/genética , Células Madre/citología , Linfocitos T/citología , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA