Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(1): 687-698, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35780192

RESUMEN

Periodontitis is a polymicrobial biofilm-induced inflammatory disease associated with a dysbiotic microbial community and severely affects the health and welfare of animals. However, little is known regarding the dental microbiota associated with this disease in goats. In this study, we used high-throughput sequencing, network analysis, and predicted functions to investigate the microbiota of clinically healthy goats and those with periodontitis and identify possible pathogens and proteins associated with the disease. Dental microbiomes of goats with periodontitis were richer, and network analyses showed that the number of negative interactions was higher in the networks of animals with periodontitis. Based on the interrelationships, Porphyromonas, Fusobacterium, and Prevotella were suggested to play an important role in the dental microbiota associated with goat periodontitis. Protein families linked to translation, cytoplasmatic translation, and rRNA processing were more abundant in the dental microbiota of goats with periodontitis. In conclusion, the dental biofilm microbiota associated with goat periodontitis seems to be dysbiotic and has significant antagonistic interactions, which discriminate healthy animals from diseased animals and highlight the importance of key bacteria. Thus, these novel findings contribute to the evolution of knowledge regarding the etiopathogenesis of goat periodontitis and possibly to the development of periodontitis control measures.


Asunto(s)
Microbiota , Periodontitis , Animales , Disbiosis/veterinaria , Periodontitis/veterinaria , Periodontitis/microbiología , Bacterias/genética , Microbiota/genética , Biopelículas
2.
Front Microbiol ; 13: 936021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033883

RESUMEN

Extensive cattle livestock is advancing in Amazonia and its low productivity, with consequent pressure to open new areas, is partly due to sanitary problems and, among them, the periodontal diseases, whose environmental triggers or modifying factors are unknown. In this study, we used high-throughput sequencing, network analysis and predicted functions to investigate the dental and ruminal microbiota of cattle raised in new livestock areas in the Amazon and identify possible keystone pathogens and proteins associated with the disease. Ninety-three genera were common in dental and ruminal fluid microbiomes and among them periodontal pathogens such as Fusobacterium, Prevotella, Porphyromonas and Actinomyces were recognized. Network analysis showed that dental microbiomes of clinically healthy animals tend to comprise a group of OTUs in homeostasis and when analyzed together, dental and ruminal fluid microbiomes of animals with periodontitis had almost twice the number of negative edges, indicating possible competition between bacteria and dysbiosis. The incisor dental and ruminal fluid microbiomes were dominated by a core community composed of members of the phyla Firmicutes and Bacteroidetes. Network results showed that members of the Prevotella genus stood out among the top five OTUs, with the largest number of hubs in the dental and ruminal microbiota of animals with periodontitis. Protein families linked to an inflammatory environment were predicted in the dental and ruminal microbiota of cattle with periodontitis. The dissimilarity between dental microbiomes, discriminating between healthy cattle and those with periodontitis and the identification of possible key pathogens, represent an important reference to elucidate the triggers involved in the etiopathogenesis of bovine periodontitis, and possibly in the development of measures to control the disease and reduce the pressures for deforestation.

3.
J Med Microbiol ; 70(7)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34313584

RESUMEN

Introduction. Periodontitis, one of the most common oral disorders in sheep, is caused by a mixed and opportunistic microbiota that severely affects the health and welfare of animals. However, little is known about the ecological processes involved and the composition of the microbiota associated with the development of the disease.Hypothesis/Gap Statement. Using high-throughput sequencing of the 16S ribosomal RNA gene and network analysis it would be possible to discriminate the microbiomes of clinically healthy sheep and those with periodontitis and possibly identify the key microorganisms associated with the disease.Aim. The present study aimed to characterise the composition of dental microbiomes and bacterial co-occurrence networks in clinically healthy sheep and animals with periodontitis.Methodology. Dental biofilm samples were collected from ten sheep with periodontitis and ten clinically healthy animals. Bacteria were identified using high-throughput sequencing of the 16S ribosomal RNA gene.Results. The most prevalent genera in the dental microbiota of sheep with periodontitis were Petrimonas, Acinetobacter, Porphyromonas and Aerococcus. In clinically healthy animals, the most significant genera were unclassified Pasteurellaceae, Pseudomonas, and Neisseria. Fusobacterium was found at high prevalence in the microbiomes of both groups. The dental microbiota of sheep in the two clinical conditions presented different profiles and the diversity and richness of bacteria was greater in the diseased animals. Network analyses showed the presence of a large number of antagonistic interactions between bacteria in the dental microbiota of animals with periodontitis, indicating the occurrence of a dysbiotic community. Through the interrelationships, members of the Prevotella genus are likely to be key pathogens, both in the dental microbiota of healthy animals and those with periodontitis. Porphyromonas stood out among the top three nodes with more centrality and the largest number of hubs in the networks of animals with periodontitis.Conclusion. The dental biofilm microbiota associated with ovine periodontitis is dysbiotic and with significant antagonistic interactions, which discriminates healthy animals from diseased animals and highlights the importance of key bacteria, such as Petrimonas, Porphyromonas, Prevotella and Fusobacterium species.


Asunto(s)
Bacterias/genética , Biopelículas/crecimiento & desarrollo , Periodontitis/microbiología , Ovinos/microbiología , Animales , Ecología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , ARN Ribosómico 16S/genética
4.
Res Vet Sci ; 118: 439-443, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29729606

RESUMEN

Bovine periodontitis is a progressive and purulent infection associated with an anaerobic subgingival biofilm, which induces irreversible damage to the dentition of affected animals. The aetiopathogenesis of the disease is unclear and treatment and control of the disease process in cattle are almost unknown. The aim of this study was to investigate the innate immune response by quantifying expression of Toll-like receptor (TLR) and cytokine genes in gingival tissue samples from cattle with and without periodontitis. Postmortem biopsies of gingival tissues were collected from 20 cattle with periodontitis and 20 cattle with no clinical signs of periodontal lesions. Tissue expression of TLR2, TLR4, TNF-α, IFN-γ, IL-1ß and IL-4 genes were determined using quantitative real-time PCR. Statistically significant increases in mRNA levels encoding TLR2 (p = 0.025), TLR4 (p = 0.037), TNF-α (p = 0.025), IFN-γ (p = 0.014), IL-1ß (p < 0.001) and IL-4 (p = 0.014) were observed in animals with periodontitis when compared to periodontally healthy animals. Increased levels of TLRs and inflammatory cytokines in periodontal tissue indicate an induction of the innate immune response of cattle and suggest that a substantial microbial challenge may be involved in the aetiopathogenesis of bovine periodontitis.


Asunto(s)
Citocinas/metabolismo , Salud Bucal , Periodontitis/veterinaria , ARN Mensajero/metabolismo , Receptores Toll-Like/metabolismo , Animales , Bovinos , Citocinas/genética , Regulación de la Expresión Génica , Periodontitis/metabolismo , ARN Mensajero/genética , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptores Toll-Like/genética
5.
Vet Microbiol ; 218: 1-6, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29685214

RESUMEN

Periodontitis is an infectious polymicrobial, immuno-inflammatory disease of multifactorial aetiology that has an impact on the health, production and welfare of ruminants. The objective of the present study was to determine the microbial profiles present in the gingival sulcus of cattle considered periodontally healthy and in the periodontal pocket of animals with periodontitis lesions using high-throughput bacterial 16S rRNA gene sequencing. Subgingival biofilm samples were collected from 40 cattle with periodontitis and 38 periodontally healthy animals. In total, 1923 OTUs were identified and classified into 395 genera or higher taxa. Microbial profiles in health differed significantly from periodontitis in their composition (p < 0.0001, F = 5.30; PERMANOVA) but no statistically significant differences were observed in the diversity of healthy and periodontitis microbiomes. The most prevalent taxa in health were Pseudomonas, Burkholderia and Actinobacteria, whereas in disease these were Prevotella, Fusobacterium and Porphyromonas. The most discriminative taxa in health were Gastranaerophilales, Planifilum and Burkholderia, and in disease these were Elusimicrobia, Synergistes and Propionivibrio. In conclusion, statistically significant difference exists between the microbiome in bovine oral health and periodontitis, with populations showing 72.6% dissimilarity. The diversity of the bacteria found in health and periodontitis were similar and bacteria recognised as periodontal pathogens showed increased abundance in disease. In this context, the main components of bacterial homeostasis in the biofilm of healthy sites and of dysbiosis in periodontal lesions provide unprecedented indicators for the evolution of knowledge about bovine periodontitis.


Asunto(s)
Bacterias/aislamiento & purificación , Disbiosis , Microbiota/genética , Salud Bucal , Periodontitis/veterinaria , Animales , Bacterias/clasificación , Bacterias/patogenicidad , Biopelículas , Bovinos , Biología Computacional , Placa Dental/microbiología , Encía/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Periodontitis/microbiología , Periodontitis/fisiopatología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA