Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Cardiovasc Med ; 11: 1424585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027006

RESUMEN

Electrocardiogram (ECG) is a non-invasive approach to capture the overall electrical activity produced by the contraction and relaxation of the cardiac muscles. It has been established in the literature that the difference between ECG-derived age and chronological age represents a general measure of cardiovascular health. Elevated ECG-derived age strongly correlates with cardiovascular conditions (e.g., atherosclerotic cardiovascular disease). However, the neural networks for ECG age estimation are yet to be thoroughly evaluated from the perspective of ECG acquisition parameters. Additionally, deep learning systems for ECG analysis encounter challenges in generalizing across diverse ECG morphologies in various ethnic groups and are susceptible to errors with signals that exhibit random or systematic distortions To address these challenges, we perform a comprehensive empirical study to determine the threshold for the sampling rate and duration of ECG signals while considering their impact on the computational cost of the neural networks. To tackle the concern of ECG waveform variability in different populations, we evaluate the feasibility of utilizing pre-trained and fine-tuned networks to estimate ECG age in different ethnic groups. Additionally, we empirically demonstrate that finetuning is an environmentally sustainable way to train neural networks, and it significantly decreases the ECG instances required (by more than 100 × ) for attaining performance similar to the networks trained from random weight initialization on a complete dataset. Finally, we systematically evaluate augmentation schemes for ECG signals in the context of age estimation and introduce a random cropping scheme that provides best-in-class performance while using shorter-duration ECG signals. The results also show that random cropping enables the networks to perform well with systematic and random ECG signal corruptions.

2.
IEEE Trans Med Imaging ; PP2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593022

RESUMEN

Knowledge of the mechanical properties is of great clinical significance for diagnosis, prognosis and treatment of cancers. Recently, a new method based on Eshelby's theory to simultaneously assess Young's modulus (YM) and Poisson's ratio (PR) in tissues has been proposed. A significant limitation of this method is that accuracy of the reconstructed YM and PR is affected by the orientation/alignment of the tumor with the applied stress. In this paper, we propose a new method to reconstruct YM and PR in cancers that is invariant to the 3D orientation of the tumor with respect to the axis of applied stress. The novelty of the proposed method resides on the use of a tensor transformation to improve the robustness of Eshelby's theory and reconstruct YM and PR of tumors with high accuracy and in realistic experimental conditions. The method is validated using finite element simulations and controlled experiments using phantoms with known mechanical properties. The in vivo feasibility of the developed method is demonstrated in an orthotopic mouse model of breast cancer. Our results show that the proposed technique can estimate the YM and PR with overall accuracy of (97.06 ± 2.42) % under all tested tumor orientations. Animal experimental data demonstrate the potential of the proposed methodology in vivo. The proposed method can significantly expand the range of applicability of the Eshelby's theory to tumors and provide new means to accurately image and quantify mechanical parameters of cancers in clinical conditions.

3.
Artif Intell Med ; 146: 102690, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38042607

RESUMEN

Twelve lead electrocardiogram signals capture unique fingerprints about the body's biological processes and electrical activity of heart muscles. Machine learning and deep learning-based models can learn the embedded patterns in the electrocardiogram to estimate complex metrics such as age and gender that depend on multiple aspects of human physiology. ECG estimated age with respect to the chronological age reflects the overall well-being of the cardiovascular system, with significant positive deviations indicating an aged cardiovascular system and a higher likelihood of cardiovascular mortality. Several conventional, machine learning, and deep learning-based methods have been proposed to estimate age from electronic health records, health surveys, and ECG data. This manuscript comprehensively reviews the methodologies proposed for ECG-based age and gender estimation over the last decade. Specifically, the review highlights that elevated ECG age is associated with atherosclerotic cardiovascular disease, abnormal peripheral endothelial dysfunction, and high mortality, among many other cardiovascular disorders. Furthermore, the survey presents overarching observations and insights across methods for age and gender estimation. This paper also presents several essential methodological improvements and clinical applications of ECG-estimated age and gender to encourage further improvements of the state-of-the-art methodologies.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Humanos , Anciano , Electrocardiografía/métodos , Aprendizaje Automático , Frecuencia Cardíaca/fisiología , Probabilidad
4.
Front Oncol ; 13: 1282536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125949

RESUMEN

Elastography Ultrasound provides elasticity information of the tissues, which is crucial for understanding the density and texture, allowing for the diagnosis of different medical conditions such as fibrosis and cancer. In the current medical imaging scenario, elastograms for B-mode Ultrasound are restricted to well-equipped hospitals, making the modality unavailable for pocket ultrasound. To highlight the recent progress in elastogram synthesis, this article performs a critical review of generative adversarial network (GAN) methodology for elastogram generation from B-mode Ultrasound images. Along with a brief overview of cutting-edge medical image synthesis, the article highlights the contribution of the GAN framework in light of its impact and thoroughly analyzes the results to validate whether the existing challenges have been effectively addressed. Specifically, This article highlights that GANs can successfully generate accurate elastograms for deep-seated breast tumors (without having artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the results of the GAN framework are thoroughly analyzed by considering the quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally, essential unaddressed challenges that lie at the intersection of elastography and GANs are presented, and a few future directions are shared for the elastogram synthesis research.

5.
Comput Biol Med ; 167: 107651, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37931527

RESUMEN

The uncontrolled proliferation of cancer cells causes the growth of the tumor mass. Consequently, the normal surrounding tissue exerts a compressive force on the tumor mass to oppose its expansion. These stresses directly promote tumor metastasis and invasion and affect drug delivery. In the past, the mechanical behavior of solid tumors has been extensively studied using linear elastic and nonlinear hyperelastic constitutive models. In this study, we develop a two-dimensional biomechanical model based on the biphasic assumption of the solid matrix and fluid phase of the tissues. Heterogeneous vasculature and nonuniform blood perfusion are also investigated by incorporating in the model a necrotic core and a well-vascularized zone. The findings of our study demonstrate a significant difference between the linear and nonlinear tissue responses to stress, while the interstitial fluid pressure (IFP) distribution is found to be independent of the constitutive model. The proposed biphasic model may be useful for elasticity imaging techniques aiming at predicting stress and IFP in tumors.


Asunto(s)
Líquido Extracelular , Neoplasias , Humanos , Modelos Biológicos , Neoplasias/patología , Presión , Sistemas de Liberación de Medicamentos , Estrés Mecánico
6.
Sci Rep ; 13(1): 15323, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714920

RESUMEN

The effect of the mechanical micro-environment on spinal cord injury (SCI) and treatment effectiveness remains unclear. Currently, there are limited imaging methods that can directly assess the localized mechanical behavior of spinal cords in vivo. In this study, we apply new ultrasound elastography (USE) techniques to assess SCI in vivo at the site of the injury and at the time of one week post injury, in a rabbit animal model. Eleven rabbits underwent laminectomy procedures. Among them, spinal cords of five rabbits were injured during the procedure. The other six rabbits were used as control. Two neurological statuses were achieved: non-paralysis and paralysis. Ultrasound data were collected one week post-surgery and processed to compute strain ratios. Histologic analysis, mechanical testing, magnetic resonance imaging (MRI), computerized tomography and MRI diffusion tensor imaging (DTI) were performed to validate USE results. Strain ratios computed via USE were found to be significantly different in paralyzed versus non-paralyzed rabbits. The myelomalacia histologic score and spinal cord Young's modulus evaluated in selected animals were in good qualitative agreement with USE assessment. It is feasible to use USE to assess changes in the spinal cord of the presented animal model. In the future, with more experimental data available, USE may provide new quantitative tools for improving SCI diagnosis and prognosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Lagomorpha , Traumatismos de la Médula Espinal , Animales , Conejos , Imagen de Difusión Tensora , Traumatismos de la Médula Espinal/diagnóstico por imagen
7.
Phys Med Biol ; 68(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37327794

RESUMEN

Objective.Compression-induced solid stress (SSc) and fluid pressure (FPc) during ultrasound poroelastography (USPE) experiments are correlated with two markers of cancer growth and treatment effectiveness: growth-induced solid stress (SSg) and interstitial fluid pressure (IFP). The spatio-temporal distributions of SSg and IFP are determined by the transport properties of the vessels and interstitium in the tumor microenvironment.Approach.We propose a new USPE method for the non-invasive imaging of the local cancer mechanical parameters and dynamics of fluid flow. When performing poroelastography experiments, it may be difficult to implement a typical creep compression protocol, which requires to maintain a constant normally applied force. In this paper, we investigate the use of a stress relaxation protocol, which might be a more convenient choice for clinical poroelastography applications.Main results.Based on our finite element and ultrasound simulations study, we demonstrate that the SSc, FPc and their spatio-temporal distribution related parameters, interstitial permeability and vascular permeability, can be determined from stress relaxation experiments with errors below 10% as compared to the ground truth and accuracy similar to that of corresponding creep tests, respectively. We also demonstrate the feasibility of the new methodology forin vivoexperiments using a small animal cancer model.Significance.The proposed non-invasive USPE imaging methods may become an effective tool to assess local tumor pressure and mechanopathological parameters in cancers.


Asunto(s)
Modelos Biológicos , Neoplasias , Animales , Diagnóstico por Imagen , Presión , Ultrasonografía , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Modelos Animales de Enfermedad , Líquido Extracelular , Microambiente Tumoral
8.
Sci Rep ; 13(1): 7132, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130836

RESUMEN

In this paper, new and non-invasive imaging methods to assess interstitial fluid transport parameters in tumors in vivo are developed, analyzed and experimentally validated. These parameters include extracellular volume fraction (EVF), interstitial fluid volume fraction (IFVF) and interstitial hydraulic conductivity (IHC), and they are known to have a critical role in cancer progression and drug delivery effectiveness. EVF is defined as the volume of extracellular matrix per unit volume of the tumor, while IFVF refers to the volume of interstitial fluid per unit bulk volume of the tumor. There are currently no established imaging methods to assess interstitial fluid transport parameters in cancers in vivo. We develop and test new theoretical models and imaging techniques to assess fluid transport parameters in cancers using non-invasive ultrasound methods. EVF is estimated via the composite/mixture theory with the tumor being modeled as a biphasic (cellular phase and extracellular phase) composite material. IFVF is estimated by modeling the tumor as a biphasic poroelastic material with fully saturated solid phase. Finally, IHC is estimated from IFVF using the well-known Kozeny-Carman method inspired by soil mechanics theory. The proposed methods are tested using both controlled experiments and in vivo experiments on cancers. The controlled experiments were performed on tissue mimic polyacrylamide samples and validated using scanning electron microscopy (SEM). In vivo applicability of the proposed methods was demonstrated using a breast cancer model implanted in mice. Based on the controlled experimental validation, the proposed methods can estimate interstitial fluid transport parameters with an error below 10% with respect to benchmark SEM data. In vivo results demonstrate that EVF, IFVF and IHC increase in untreated tumors whereas these parameters are observed to decrease over time in treated tumors. The proposed non-invasive imaging methods may provide new and cost-effective diagnostic and prognostic tools to assess clinically relevant fluid transport parameters in cancers in vivo.


Asunto(s)
Líquido Extracelular , Neoplasias , Animales , Ratones , Líquido Extracelular/diagnóstico por imagen , Líquido Extracelular/metabolismo , Modelos Biológicos , Neoplasias/patología , Transporte Biológico , Modelos Teóricos
9.
IEEE J Transl Eng Health Med ; 10: 1900411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147877

RESUMEN

Mechanical and transport properties of cancers such as Young's modulus (YM), Poisson's ratio (PR), and vascular permeability (VP) have great clinical importance in cancer diagnosis, prognosis, and treatment. However, non-invasive estimation of these parameters in vivo is challenged by many practical factors. Elasticity imaging methods, such as "poroelastography", require prolonged data acquisition, which can limit their clinical applicability. In this paper, we investigate a new method to perform poroelastography experiments, which results in shorter temporal acquisition windows. This method is referred to as "short-time poroelastography" (STPE). Finite element (FE) and ultrasound simulations demonstrate that, using STPE, it is possible to accurately estimate YM, PR (within 10% error) using windows of observation (WoOs) of length as short as 1 underlying strain Time Constant (TC). The error was found to be almost negligible (< 3%) when using WoOs longer than 2 strain TCs. In the case of VP estimation, WoOs of at least 2 strain TCs are required to obtain an error < 8% (in simulations). The stricter requirement for the estimation of VP with respect to YM and PR is due its reliance on the transient strain behavior while YM and PR depend on the steady state strain values only. In vivo experimental data are used as a proof-of-principle of the potential applicability of the proposed methodology in vivo. The use of STPE may provide a means to efficiently perform poroelastography experiments without compromising the accuracy of the estimated tissue properties.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias , Permeabilidad Capilar , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Neoplasias/diagnóstico , Ultrasonografía/métodos
10.
Comput Biol Med ; 148: 105707, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35725503

RESUMEN

Ultrasound poroelastography focuses on the estimation of the spatio-temporal mechanical behavior of tissues using data often corrupted with non-stationary noise. The cumulative strain calculated from prolonged temporal acquisition of RF data can face the problem of aggregate noise. This noise can significantly affect the accuracy of curve fitting techniques necessary to estimate the clinically significant strain Time Constant (TC) and related parameters. We present a new technique, which decomposes the non-linear temporal behavior of the differential strain to extract the monotonic decaying trend by using the time-domain and data-driven Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm. A linear regression scheme is then used to obtain the slope of the transformed non-linear trend, which carries information about the strain TC. Assessment of Vascular Permeability (VP), a transport parameter indicative of tumor growth, requires accurate strain TC estimations. Finite Element (FE), ultrasound simulations and in vivo experiments are used to investigate the performance of the proposed technique. Based on the simulation analysis, the average Percentage Relative Error (PRE) values of our method are 4.15% (for TC estimation) and 5.00% (for VP estimation) at 20 dB SNR level for different Percentage of Good Frames (PGF) (i.e., 20%, 50%, 75%, and 100%). These PRE values are substantially lower than those obtained using other conventional elastographic techniques. Our proposed method could become a new data-adaptive tool for analyzing the non-linear time-dependent response of complex tissues such as cancers.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias , Algoritmos , Permeabilidad Capilar , Humanos , Modelos Lineales , Fantasmas de Imagen , Ultrasonografía
11.
Med Image Anal ; 74: 102221, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34520960

RESUMEN

Three-dimensional (3-D) reconstruction of the spine surface is of strong clinical relevance for the diagnosis and prognosis of spine disorders and intra-operative image guidance. In this paper, we report a new technique to reconstruct lumbar spine surfaces in 3-D from non-invasive ultrasound (US) images acquired in free-hand mode. US images randomly sampled from in vivo scans of 9 rabbits were used to train a U-net convolutional neural network (CNN). More specifically, a late fusion (LF)-based U-net trained jointly on B-mode and shadow-enhanced B-mode images was generated by fusing two individual U-nets and expanding the set of trainable parameters to around twice the capacity of a basic U-net. This U-net was then applied to predict spine surface labels in in vivo images obtained from another rabbit, which were then used for 3-D spine surface reconstruction. The underlying pose of the transducer during the scan was estimated by registering stacks of US images to a geometrical model derived from corresponding CT data and used to align detected surface points. Final performance of the reconstruction method was assessed by computing the mean absolute error (MAE) between pairs of spine surface points detected from US and CT and by counting the total number of surface points detected from US. Comparison was made between the LF-based U-net and a previously developed phase symmetry (PS)-based method. Using the LF-based U-net, the averaged number of US surface points across the lumbar region increased by 21.61% and MAE reduced by 26.28% relative to the PS-based method. The overall MAE (in mm) was 0.24±0.29. Based on these results, we conclude that: 1) the proposed U-net can detect the spine posterior arch with low MAE and large number of US surface points and 2) the newly proposed reconstruction framework may complement and, under certain circumstances, be used without the aid of an external tracking system in intra-operative spine applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Animales , Vértebras Lumbares/diagnóstico por imagen , Conejos , Ultrasonografía
12.
Sci Rep ; 10(1): 13646, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788593

RESUMEN

The healing of large bone defects has been investigated for decades due to its complexity and clinical relevance. Ultrasound (US) methods have shown promise in monitoring bone healing, but no quantitative method to assess regenerated bone morphology in US images has been presented yet. In this study, we investigate new US morphometric parameters to quantify bone regeneration in vivo. A segmental tibial defect was surgically created and stabilized in a sheep animal model. US and computed tomography (CT) imaging data were collected two months post-surgery. New bone was assessed, reconstructed and quantified from the US and CT data using 3 morphometric parameters: the new-bone bulk (NBB), new-bone surface (NBS) and new-bone contact (NBC). The distance (mm) between surface reconstructions from repeated US was [Formula: see text] and from US and CT was [Formula: see text]. In the mid-shaft of the defected tibia, US measurements of NBB, NBS and NBC were significantly higher than the corresponding CT measurements ([Formula: see text]). Based on our results, we conclude that US may complement CT to reconstruct and quantify bone regrowth, especially in its early stages.


Asunto(s)
Regeneración Ósea , Huesos/citología , Modelos Animales de Enfermedad , Tibia/crecimiento & desarrollo , Fracturas de la Tibia/cirugía , Ultrasonografía/métodos , Cicatrización de Heridas , Animales , Huesos/diagnóstico por imagen , Femenino , Ovinos , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X
13.
Sci Rep ; 10(1): 7266, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350327

RESUMEN

Alterations of Young's modulus (YM) and Poisson's ratio (PR) in biological tissues are often early indicators of the onset of pathological conditions. Knowledge of these parameters has been proven to be of great clinical significance for the diagnosis, prognosis and treatment of cancers. Currently, however, there are no non-invasive modalities that can be used to image and quantify these parameters in vivo without assuming incompressibility of the tissue, an assumption that is rarely justified in human tissues. In this paper, we developed a new method to simultaneously reconstruct YM and PR of a tumor and of its surrounding tissues based on the assumptions of axisymmetry and ellipsoidal-shape inclusion. This new, non-invasive method allows the generation of high spatial resolution YM and PR maps from axial and lateral strain data obtained via ultrasound elastography. The method was validated using finite element (FE) simulations and controlled experiments performed on phantoms with known mechanical properties. The clinical feasibility of the developed method was demonstrated in an orthotopic mouse model of breast cancer. Our results demonstrate that the proposed technique can estimate the YM and PR of spherical inclusions with accuracy higher than 99% and with accuracy higher than 90% in inclusions of different geometries and under various clinically relevant boundary conditions.


Asunto(s)
Neoplasias de la Mama/patología , Animales , Modelos Animales de Enfermedad , Diagnóstico por Imagen de Elasticidad/métodos , Femenino , Humanos , Ratones , Distribución de Poisson , Reproducibilidad de los Resultados , Estrés Mecánico
14.
Ultrason Imaging ; 42(1): 5-14, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31937211

RESUMEN

Ultrasound poroelastography is a cost-effective and noninvasive imaging technique, which can be used to reconstruct mechanical parameters of tissues such as Young's modulus, Poisson's ratio, interstitial permeability, and vascular permeability. To estimate interstitial permeability and vascular permeability using poroelastography, accurate estimation of the strain time constant (TC) is required. This can be a challenging task due to the nonlinearity of the exponential strain curve and noise affecting the experimental data. Due to motion artifacts caused by the sonographer, animal/patient, and/or the environment, noise affecting some strain frames can be significantly higher than the strain signal. If these frames are used for the computation of the strain TC, the resulting TC estimate can be highly inaccurate, which, in turn, can cause high errors in the reconstructed mechanical parameters. In this paper, we introduce a cubic spline-based interpolation method, which allows to use only good quality strain frames (i.e., frames with sufficiently high signal-to-noise ratio [SNR]) to estimate the strain TC. Using finite element simulations, we demonstrate that the proposed interpolation method can improve the estimation accuracy of the strain TC by 46% with respect to the case where no interpolation and filtering are used and by 37% with respect to the case where the strain frames are Kalman filtered before TC estimation (at an SNR of 30 dB). We also prove the technical feasibility of the proposed technique using in vivo experimental data. While detecting the bad frames in both simulations and experiments, we assumed the lower limit SNR to be below 10 dB. Based on our results, the proposed technique may be of great help in applications relying on the accurate assessment of the temporal behavior of strain data.


Asunto(s)
Permeabilidad Capilar , Simulación por Computador , Diagnóstico por Imagen de Elasticidad/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido , Tiempo
15.
IEEE Trans Biomed Eng ; 67(4): 1083-1096, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31331877

RESUMEN

OBJECTIVE: Vascular permeability (VP) is a mechanical parameter which plays an important role in cancer initiation, metastasis, and progression. To date, there are only a few non-invasive methods that can be used to image VP in solid tumors. Most of these methods require the use of contrast agents and are expensive, limiting widespread use. METHODS: In this paper, we propose a new method to image VP in tumors, which is based on the use of ultrasound poroelastography. Estimation of VP by poroelastography requires knowledge of the Young's modulus (YM), Poisson's ratio (PR), and strain time constant (TC) in the tumors. In our method, we find the ellipse which best fits the tumor (regardless of its shape) using an eigen-system-based fitting technique and estimate the YM and PR using Eshelby's elliptic inclusion formulation. A Fourier method is used to estimate the axial strain TC, which does not require any initial guess and is highly robust to noise. RESULTS: It is demonstrated that the proposed method can estimate VP in irregularly shaped tumors with an accuracy of above [Formula: see text] using ultrasound simulation data with signal-to-noise ratio of 20 dB or higher. In vivo feasibility of the proposed technique is demonstrated in an orthotopic mouse model of breast cancer. CONCLUSION: The proposed imaging method can provide accurate and localized estimation of VP in cancers non-invasively and cost-effectively. SIGNIFICANCE: Accurate and non-invasive assessment of VP can have a significant impact on diagnosis, prognosis, and treatment of cancers.


Asunto(s)
Permeabilidad Capilar , Neoplasias , Animales , Simulación por Computador , Módulo de Elasticidad , Humanos , Ratones , Neoplasias/diagnóstico por imagen , Relación Señal-Ruido , Ultrasonografía
16.
Artículo en Inglés | MEDLINE | ID: mdl-31796395

RESUMEN

This study reports the first use of ultrasound (US) elastography for imaging spinal fractures by assessing the mechanical response of the soft tissue at the posterior vertebra boundary to a uniaxial compression in rabbit ex vivo samples. Three-dimensional finite-element (FE) models of the vertebra-soft tissue complex in rabbit samples are generated and analyzed to evaluate the distribution of the axial normal and shear strains at the vertebra-soft tissue interface. Experiments on the same samples are performed to corroborate simulation findings. Results of this study indicate that the distribution of the axial strains manifests as distinct patterns around intact and fractured vertebrae. Numerical characteristics of the axial strain's spatial distribution are further used to construct two shape descriptors to make inferences on spinal abnormalities: 1) axial normal strain asymmetry for assessing the presence of fractures and 2) principal orientation of axial shear strain concentration regions (shear zones) for measurement of spinous process dislocation. This study demonstrates that axial normal strain and axial shear strain maps obtained via US elastography can provide a new means to detect spine fractures and abnormalities in the selected ex vivo animal models. Spinal fracture detection is important for the assessment of spinal cord injuries and stability. However, identification of spinal fractures using US is currently challenging. Our results show that features resulting from strain elastograms can serve as a useful adjunct to B-mode images in identifying spine fractures in the selected animal samples, and this information could be helpful in clinical settings.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Animales , Módulo de Elasticidad , Fantasmas de Imagen , Conejos , Columna Vertebral/diagnóstico por imagen
17.
Comput Biol Med ; 111: 103343, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31279980

RESUMEN

Ultrasound poroelastography is a non-invasive imaging modality that has been shown to be capable of estimating mechanical parameters such as Young's modulus (YM), Poisson's ratio (PR) and vascular permeability (VP) in cancers. However, experimental poroelastographic data are inherently noisy because of the requirement of relatively long temporal data acquisitions often in hand-held mode conditions. In this paper, we propose a new method, which allows accurate estimation of YM and PR from denoised steady state axial and lateral strains by empirical orthogonal function (EOF) analysis of poroelastographic data. The method also allows estimation of VP from the time constant (TC) of the first expansion coefficient (EC) of the temporal axial strain, which has larger dynamic range and lower noise in comparison to the actual temporal axial strain curve. We validated our technique through finite element (FE) and ultrasound simulations and tested the in vivo feasibility in experimental data obtained from a cancer animal model. The percent relative errors (PRE) in the estimation of YM, PR and VP using the EOF analysis as applied to ultrasound simulation data were 3.27%, 3.10%, 14.22%, respectively (at SNR of 20 dB). Based on the high level of accuracy by EOF analysis, the proposed technique may become a useful signal processing technique for applications focusing on the estimation of the mechanical behavior of cancers.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias , Animales , Permeabilidad Capilar/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Ratones , Modelos Biológicos , Neoplasias/diagnóstico por imagen , Neoplasias/fisiopatología , Distribución de Poisson , Procesamiento de Señales Asistido por Computador
18.
J Biomech ; 89: 48-56, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31000348

RESUMEN

An analytical model for a spherical poroelastic tumor embedded in normal poroelastic tissues under creep compression is presented in this paper. The tissue is modeled as a cylindrical sample containing a spherical inclusion having different material properties. Analytical expression for the volumetric strain generated inside the inclusion during creep compression is obtained. Error analysis is carried out by comparing the results from the developed analytical model with corresponding results obtained from an established finite element software for a number of samples with different material properties. The error is found to be below 2.5% for the samples with a small inclusion and 7% in the samples with a large inclusion. The analytical solutions reported in this paper can greatly impact elasticity imaging techniques aiming at reconstructing mechanical properties of tumors such as Young's modulus, Poisson's ratio, interstitial permeability and vascular permeability.


Asunto(s)
Fuerza Compresiva , Elasticidad , Modelos Biológicos , Neoplasias/patología , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Porosidad , Estrés Mecánico
19.
IEEE Trans Med Imaging ; 38(6): 1358-1370, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30703014

RESUMEN

Novel viscoelastic and poroelastic elastography techniques rely on the accurate estimation of the temporal behavior of the axial or lateral strains and related parameters. From the temporal curve of the elastographic parameter of interest, the time constant (TC) is estimated using analytical models and curve-fitting techniques such as Levenberg-Marquardt (LM), Nelder-Mead (NM), and trust-region reflective (TR). In this paper, we propose a new technique named variable projection (VP) to estimate accurately and robustly the TC and steady-state value of the elastographic parameter of interest from its temporal curve. As a testing platform, the method is used with a novel analytical model, which can be used for both poroelastic and viscoelastic tissues and in most practical experimental conditions of clinical interest. Finite element and ultrasound simulations and experimental results demonstrate that VP is robust to noise and capable of estimating the TC of the elastographic parameter with accuracy higher than that of typically employed curve-fitting techniques. The results also demonstrate that the performance of VP is not affected by an incorrect initial TC guess. For example, in simulations, VP can estimate the TC of axial strain and effective Poisson's ratio accurately for initial guesses ranging from 0.001 to infinite times of the true TC value even in fairly noisy conditions (30-dB signal to noise ratio). In experiments, VP always estimates the axial strain TC reliably, whereas the LM, NM, and TR methods fail to converge or converge to wrong solutions in most of the cases.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Animales , Análisis de los Mínimos Cuadrados , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Fantasmas de Imagen , Relación Señal-Ruido
20.
Phys Med Biol ; 64(2): 025014, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628584

RESUMEN

The inter-fragmentary gap size (IFGS) is a critical factor affecting the propensity of bone healing. In this paper, we present a study to analyze ultrasound strain elastographic numerical features in samples with distinct IFGS using both simulations and experiments. Six fractured rabbit hind leg samples in total were used in this study with controlled IFGS of 1 mm, 5 mm and 1 cm. For the simulation, computed tomography (CT) scans of all six samples were used to create solid models. Finite element analysis (FEA) and subsequent elastography simulations were performed on the 3D models to produce tensorial strain field data. Features of bony fragment separation were defined on different strain components and computed for strains segmented at varying thresholds to evaluate their performance in estimating the IFGS. A threshold for each strain component was then determined, based on which extra 3D features of interest were defined and extracted from the segmented strain data. Then, all 3D features were compared statistically among the three nominal groups. Additional simulations and experiments of axial shear strain elastography (ASSE) on the median coronal plane of the same samples were also performed. Our results indicate that coronal plane axial shear (CPAS) strain elastography produces a separation feature which is statistically correlated with the IFGS, and that our elastography simulation module is effective in predicting the CPAS elastographic strain behavior for different IFGS.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Miembro Posterior/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Animales , Análisis de Elementos Finitos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...