Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273169

RESUMEN

Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 µM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.


Asunto(s)
Apoptosis , Autofagia , Fibroblastos , Glucosilceramidasa , Mitocondrias , Estrés Oxidativo , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Humanos , Fibroblastos/metabolismo , Autofagia/genética , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Piel/metabolismo , Piel/patología , Lisosomas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación
2.
Neuropharmacology ; 261: 110152, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245141

RESUMEN

Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aß), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 µM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aß by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aß (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Neuronas Colinérgicas , Minociclina , Presenilina-1 , Proteínas tau , Presenilina-1/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Minociclina/farmacología , Animales , Proteínas tau/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Ratones , Humanos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Fármacos Neuroprotectores/farmacología , Simulación del Acoplamiento Molecular
3.
ACS Chem Neurosci ; 15(19): 3563-3575, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39259845

RESUMEN

Familial Alzheimer's disease (FAD) is a chronic neurological condition that progresses over time. Currently, lacking a viable treatment, the use of multitarget medication combinations has generated interest as a potential FAD therapy approach. In this study, we examined the effects of 4-phenylbutyric acid (4-PBA) and methylene blue (MB) either separately or in combination on PSEN1 I416T cholinergic-like neuron cells (ChLNs), which serve as a model for FAD. We found that MB was significantly efficient at reducing the accumulation of intracellular Aß, phosphorylation of TAU Ser202/Thr205, and increasing Δψm, whereas 4-PBA was significantly efficient at diminishing oxidation of DJ-1Cys106-SH, expression of TP53, and increasing ACh-induced Ca2+ influx. Both agents were equally effective at blunting phosphorylated c-JUN at Ser63/Ser73 and activating caspase 3 (CASP3) into cleaved caspase 3 (CC3) on mutant cells. Combination of MB and 4-PBA at middle (0.1, 1) concentration significantly reduced iAß, p-TAU, and oxDJ-1 and augmented the ACh-induced Ca2+ influx compared to combined agents at low (0.05, 0.5) or high (0.5, 5) concentration. However, combined MB and 4-PBA were efficient only at dropping DJ-1Cys106-SO3 and increasing ACh-induced Ca2+ inward in mutant ChLNs. Our data show that the reagents MB and 4-PBA alone possess more than one action (e.g., antiamyloid, antioxidant, anti-TAU, antiapoptotic, and ACh-induced Ca2+ influx enhancers), that in combination might cancel or diminish each other. Together, these results strongly argue that MB and 4-PBA might protect PSEN1 I416T ChLNs from Aß-induced toxicity by working intracellularly as anti-Aß and anti-Tau agents, improving Δψm and cell survival, and extracellularly, by increasing ACh-induced Ca2+ ion influx. MB and 4-PBA are promising drugs with potential for repurposing in familial AD.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Apoptosis , Azul de Metileno , Fenilbutiratos , Presenilina-1 , Presenilina-1/genética , Presenilina-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Azul de Metileno/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Humanos , Fenilbutiratos/farmacología , Proteínas tau/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Animales , Fosforilación/efectos de los fármacos
4.
Neurotox Res ; 42(3): 28, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842585

RESUMEN

Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A ß ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 µ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A ß (iA ß ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA ß , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.


Asunto(s)
Neuronas Colinérgicas , Rotenona , Rotenona/toxicidad , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Animales , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Demencia/patología , Demencia/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Células Cultivadas
5.
Neurochem Res ; 49(9): 2440-2452, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38847910

RESUMEN

Parkinson's disease (PD) is a complex multifactorial progressive neurodegenerative disease characterized by locomotor alteration due to the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). Mounting evidence shows that human LRRK2 (hLRRK2) kinase activity is involved in oxidative stress (OS)-induced neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that the hLRRK2 inhibitor PF-06447475 (PF-475) prolonged lifespan, increased locomotor activity, maintained DAergic neuronal integrity, and reduced lipid peroxidation (LPO) in female Drosophila melanogaster flies chronically exposed to paraquat (PQ), a redox cycling compound, compared to flies treated with vehicle only. Since LRRK2 is an evolutionary conserved kinase, the present findings reinforce the idea that either reduction or inhibition of the LRRK2 kinase might decrease OS and locomotor alterations associated with PD. Our observations highlight the importance of uncovering the function of the hLRRK2 orthologue dLrrk2 in D. melanogaster as an excellent model for pharmacological screenings.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Locomoción , Longevidad , Estrés Oxidativo , Paraquat , Animales , Estrés Oxidativo/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Paraquat/toxicidad , Longevidad/efectos de los fármacos , Locomoción/efectos de los fármacos , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Herbicidas/toxicidad
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732141

RESUMEN

Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.


Asunto(s)
Enfermedad de Alzheimer , Antracenos , Curcumina , Presenilina-1 , Taurina/análogos & derivados , Curcumina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Antracenos/farmacología , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Humanos , Proteínas tau/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos
7.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728184

RESUMEN

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Asunto(s)
Enfermedad de Alzheimer , Neuronas Colinérgicas , Mutación , Presenilina-1 , Citrato de Sildenafil , Presenilina-1/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Mutación/genética , Animales , Citrato de Sildenafil/farmacología , Péptidos beta-Amiloides/metabolismo , Humanos , Células Cultivadas , Ratones , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación/efectos de los fármacos , Fenotipo
8.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958728

RESUMEN

Several efforts to develop new protocols to differentiate in in vitro human mesenchymal stromal cells (hMSCs) into dopamine (DA) neurons have been reported. We have formulated NeuroForsk 2.0 medium containing fibroblast growth factor type beta (FGFb), brain-derived neurotrophic factor (BDNF), melatonin, purmorphamine, and forskolin. We report for the first time that menstrual stromal cells (MenSCs) cultured in NeuroForsk 2.0 medium for 7 days transdifferentiated into DA-like neurons (DALNs) expressing specific DA lineage markers tyrosine hydroxylase-positive cells (TH+) and DA transporter-positive (DAT+) cells and were responsive to DA-induced transient Ca2+ influx. To test the usefulness of this medium, DALNs were exposed to rotenone (ROT), a naturally occurring organic neurotoxin used extensively to chemically induce an in vitro model of Parkinson's disease (PD), which is a movement disorder characterized by the specific loss of DA neurons. We wanted to determine whether ROT induces apoptotic cell death and autophagy pathway under acute or chronic conditions in DALNs. Here, we report that acute ROT exposure induced several molecular changes in DALNS. ROT induced a loss of mitochondrial membrane potential (ΔΨm), high expression of parkin (PRKN), and high colocalization of dynamin-related protein 1 (DRP1) with the mitochondrial translocase of the outer membrane of mitochondria 20 (TOMM20) protein. Acute ROT also induced the appearance of DJ-1Cys106-SO3, as evidenced by the generation of H2O2 and oxidative stress (OS) damage. Remarkably, ROT triggered the phosphorylation of leucine-rich repeat kinase 2 (LRRK2) at residue Ser935 and phosphorylation of α-Syn at residue Ser129, a pathological indicator. ROT induced the accumulation of lipidated microtubule-associated protein 1B-light chain 3 (LC3B), a highly specific marker of autophagosomes. Finally, ROT induced cleaved caspase 3 (CC3), a marker of activated caspase 3 (CASP3) in apoptotic DALNs compared to untreated DANLs. However, the chronic condition was better at inducing the accumulation of lysosomes than the acute condition. Importantly, the inhibitor of the LRRK2 kinase PF-06447475 (PF-475) almost completely blunted ROT-induced apoptosis and reduced ROT-induced accumulation of lysosomes in both acute and chronic conditions in DALNs. Our data suggest that LRRK2 kinase regulated both apoptotic cell death and autophagy in DALNs under OS. Given that defects in mitochondrial complex I activity are commonly observed in PD, ROT works well as a chemical model of PD in both acute and chronic conditions. Therefore, prevention and treatment therapy should be guided to relieve DALNs from mitochondrial damage and OS, two of the most important triggers in the apoptotic cell death of DALNs.


Asunto(s)
Enfermedad de Parkinson , Rotenona , Humanos , Rotenona/farmacología , Rotenona/metabolismo , Dopamina/metabolismo , Caspasa 3/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Apoptosis , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Autofagia , Enfermedad Crónica
9.
Sci Rep ; 13(1): 12833, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553376

RESUMEN

Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPß fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPß fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAß42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAß42, and support the view that FAD is triggered by the accumulation of other intracellular AßPP metabolites, rather than eAß42.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Neuronas/metabolismo , Colinérgicos , Mutación
10.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445652

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been linked to dopaminergic neuronal vulnerability to oxidative stress (OS), mitochondrial impairment, and increased cell death in idiopathic and familial Parkinson's disease (PD). However, how exactly this kinase participates in the OS-mitochondria-apoptosis connection is still unknown. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 LRRK2 knockout (KO) in the human embryonic kidney cell line 293 (HEK-293) to evaluate the cellular response to the mitochondrial inhibitor complex I rotenone (ROT), a well-known OS and cell death inducer. We report successful knockout of the LRRK2 gene in HEK-293 cells using CRISPR editing (ICE, approximately 60%) and flow cytometry (81%) analyses. We found that HEK-293 LRRK2 WT cells exposed to rotenone (ROT, 50 µM) resulted in a significant increase in intracellular reactive oxygen species (ROS, +7400%); oxidized DJ-1-Cys106-SO3 (+52%); phosphorylation of LRRK2 (+70%) and c-JUN (+171%); enhanced expression of tumor protein (TP53, +2000%), p53 upregulated modulator of apoptosis (PUMA, +1950%), and Parkin (PRKN, +22%); activation of caspase 3 (CASP3, +8000%), DNA fragmentation (+35%) and decreased mitochondrial membrane potential (ΔΨm, -58%) and PTEN induced putative kinase 1 (PINK1, -49%) when compared to untreated cells. The translocation of the cytoplasmic fission protein dynamin-related Protein 1 (DRP1) to mitochondria was also observed by colocalization with translocase of the outer membrane 20 (TOM20). Outstandingly, HEK-293 LRRK2 KO cells treated with ROT showed unaltered OS and apoptosis markers. We conclude that loss of LRRK2 causes HEK-293 to be resistant to ROT-induced OS, mitochondrial damage, and apoptosis in vitro. Our data support the hypothesis that LRRK2 acts as a proapoptotic kinase by regulating mitochondrial proteins (e.g., PRKN, PINK1, DRP1, and PUMA), transcription factors (e.g., c-JUN and TP53), and CASP3 in cells under stress conditions. Taken together, these observations suggest that LRRK2 is an important kinase in the pathogenesis of PD.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Rotenona , Humanos , Rotenona/toxicidad , Caspasa 3/metabolismo , Células HEK293 , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés Oxidativo , Apoptosis/genética , Proteínas Quinasas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
11.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445771

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-ß-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Rotenona/farmacología , Rotenona/metabolismo , Células HEK293 , Peróxido de Hidrógeno/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
12.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240306

RESUMEN

Alzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly's mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPß fragments, produce eAß42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/metabolismo , Neuronas Colinérgicas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colinérgicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
13.
ACS Chem Neurosci ; 14(11): 2159-2171, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220279

RESUMEN

Parkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression. Herein, menstrual stromal cell-derived dopamine-like neurons (DALNs) intoxicated with paraquat (PQ2+)/maneb (MB) were used as a model system to elucidate the mechanism by which CBD protects the neural cell from apoptosis in vitro. According to immunofluorescence microscopy, flow cytometry, cell-free assay, and molecular docking analysis, we demonstrate that CBD offers protection to DALNs against PQ2+ (1 mM)/MB (50 µM)-induced oxidative stress (OS) by simultaneously (i) decreasing reactive oxygen species (ROS: O2•-, H2O2), (ii) maintaining the mitochondrial membrane potential (ΔΨm), (iii) directly binding to stress sensor protein DJ-1, thereby blunting its oxidation from DJ-1CYS106-SH into DJ-1CYS106-SO3, and (iv) directly binding to pro-apoptotic protease protein caspase 3 (CASP3), thereby disengaging neuronal dismantling. Furthermore, the protective effect of CBD on DJ-1 and CASP3 was independent of CB1 and CB2 receptor signaling. CBD also re-established the Ca2+ influx in DALNs as a response to dopamine (DA) stimuli under PQ2+/MB exposure. Because of its powerful antioxidant and antiapoptotic effects, CBD offers potential therapeutic utility in the treatment of PD.


Asunto(s)
Cannabidiol , Maneb , Enfermedad de Parkinson , Humanos , Paraquat/toxicidad , Paraquat/metabolismo , Maneb/toxicidad , Maneb/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Caspasa 3/metabolismo , Dopamina/metabolismo , Receptores de Cannabinoides/metabolismo , Peróxido de Hidrógeno/farmacología , Simulación del Acoplamiento Molecular , Muerte Celular , Neuronas Dopaminérgicas/metabolismo , Estrés Oxidativo
14.
J Alzheimers Dis ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36846998

RESUMEN

BACKGROUND: Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as A ß PP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. OBJECTIVE: To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. METHODS: We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. RESULTS: Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AßPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2 + influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2 + influx in mutant CSs. CONCLUSION: Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.

15.
Med Oncol ; 40(1): 15, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352172

RESUMEN

Acute lymphoblastic leukemia (ALL) is hematological neoplasia that affects human beings from early life to adulthood. Although ALL treatment has been effective, an important percentage of ALL patients are resilient to treatment. Therefore, there is an urgent need for testing a new combination of compounds for the treatment of this disease. Recently, combined TPEN and TPGS (T2 combo) have shown selective cytotoxic effects in vitro leukemia cells such as Jurkat, K562, and Ba/F3 cells. In this study, we aimed to test the effect of combined TPEN and TPGS agents (T2 combo) at a fixed dose (TPEN 5 mg/kg: TPGS 100 mg/kg) on leukemic Ba/F3-BCR-ABL P210 BALB-c mice model. We found that 4 successive 2-day apart intravenous injections of T2 combo showed a statistically significant reduction of Ba/F3 BCR-ABL leukemia cells (- 69%) in leukemia BALB/c mice (n = 6) compared to untreated leukemia group (n = 6). Moreover, the T2 combo was innocuous to non-leukemia BALB/c mice (n = 3) compared to untreated non-leukemia mice (control, n = 3). After treatments (day 42), all mice were left to rest until day 50. Outstandingly, the leukemia BALB/c mice treated with the T2 combo showed a lower percentage of Ba/F3-BCR-ABL P210 cells (- 84%) than untreated leukemia BALB/c mice. Furthermore, treatment of leukemia and non-leukemia mice with T2 combo showed no significant tissue alteration/damage according to the histopathological analysis of brain, heart, liver, kidney, and spleen samples; however, T2 combo significantly reduced the number of leukocytes in the bone marrow of treated leukemia mice. We conclude that the T2 combo specifically affects leukemia cells but no other tissue/organs. Therefore, we anticipate that the T2 combo might be a potential pro-oxidant combination for the treatment of leukemia patients.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Ratones , Animales , Adulto , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Cromosoma Filadelfia , Ratones Endogámicos BALB C
16.
Biochem Biophys Rep ; 31: 101300, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35755270

RESUMEN

Background: Acute lymphoblastic leukemia (ALL) is still incurable hematologic neoplasia in an important percentage of patients. Therefore, new therapeutic approaches need to be developed. Methods: To evaluate the cellular effect of cell-penetrating peptides (C-PP) on leukemia cells, Jurkat cells -a model of ALL were exposed to increasing concentration (50-500 µM) Aß25-35, R7-G-Aß25-35 and Aß25-35-G-R7 peptide for 24 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry (FC), and fluorescent microscopy (FM) analysis were used to assess metabolic viability, cell cycle and proliferation, mitochondria functionality, oxidative stress, and cell death markers. Results: We report for the first time that the R7-G-Aß25-35, but not Aß25-35 peptide, induced selective cell death in Jurkat cells more efficiently than the Aß25-35-G-R7 peptide. Indeed, R7-G-Aß25-35 (200 µM) altered the metabolic activity (-25%), arrested the cell cycle in the G2/M-phase (15%), and induced a significant reduction of cellular proliferation (i.e., -74% reduction of Ki-67 nuclei reactivity). Moreover, R7-G-Aß25-35 induced the dissipation of mitochondrial membrane potential (ΔΨm, 51%) and produced an important amount of reactive oxygen species (ROS, 75% at 8 h) in Jurkat cells. The exposure of cells to antioxidant/cytoprotectant N-acetylcysteine (NAC) did not prevent R7-G-Aß25-35 from a loss of ΔΨm in Jurkat cells. The peptide was also unable to activate the executer CASPASE-3, thereby preserving the integrity of the cellular DNA corroborated by the fact that the caspase-3 inhibitor NSCI was unable to protect cells from R7-G-Aß25-35 -induced cell damage. Further analysis showed that the R7-G-Aß25-35 peptide is specifically localized at the outer mitochondria membrane (OMM) according to colocalization with the protein translocase TOMM20. Additionally, the cytotoxic effect of the poly-R7 peptide resembles the toxic action of the uncoupler FCCP, mitocan oligomycin, and rotenone in Jurkat cells. Importantly, the R7-G-Aß25-35 peptide was innocuous to menstrual mesenchymal stromal cells (MenSC) -normal non-leukemia proliferative cells. Conclusion: Our findings demonstrated that the cationic Aß peptide possesses specific anti-leukemia activity against Jurkat cells through oxidative stress (OS)- and CASPASE-3-independent mechanism but fast mitochondria depolarization.

17.
Biometals ; 35(4): 741-758, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635647

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic disorder characterized by the abnormal proliferation and accumulation of immature B-lymphoblasts arrested at various stages of differentiation. Despite advances in treatment, a significant percentage of pediatric patients with precursor B-ALL still relapse. Therefore, alternative therapies are needed to improve the cure rates for pediatric patients. TPEN (N, N, N', N'-tetrakis(2-pyridylmethyl)-ethylenediamine) is a pro-oxidant agent capable of selectively inducing apoptosis in leukemia cell lines. Consequently, it has been suggested that TPEN could be a potential agent for oxidative therapy. However, it is not yet known whether TPEN can selectively destroy leukemia cells in a more disease-like model, for example, the bloodstream and bone marrow (BM), ex vivo. This investigation is an extension of a previous study that dealt with the effect of TPEN on ex vivo isolated/purified refractory B-ALL cells. Here, we evaluated the effect of TPEN on whole BM from nonleukemic patients (control) or pediatric patients diagnosed with de novo B-ALL or refractory B-ALL cells by analyzing the hematopoietic cell lineage marker CD34/CD19. Although TPEN was innocuous to nonleukemic BM (n = 3), we found that TPEN significantly induced apoptosis in de novo (n = 5) and refractory B-ALL (n = 6) leukemic cell populations. Moreover, TPEN significantly increased the counts of cells positive for the oxidation of the stress sensor protein DJ-1, a sign of the formation of H2O2, and significantly increased the counts of cells positive for the pro-apoptotic proteins TP53, PUMA, and CASPASE-3 (CASP-3), indicative of apoptosis, in B-ALL cells. We demonstrate that TPEN selectively eliminates B-ALL cells (CD34 + /CD19 +) but no other cell populations in BM (CD34 + /CD19-; CD34-/CD19 + ; CD34-/CD19-) independent of age, diagnosis status (de novo or refractory), sex, karyotype, or immunophenotype. Understanding TPEN-induced cell death in leukemia cells provides insight into more effective therapeutic oxidation-inducing anticancer agents.


Asunto(s)
Médula Ósea , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19/metabolismo , Médula Ósea/metabolismo , Niño , Etilenodiaminas , Humanos , Peróxido de Hidrógeno/metabolismo , Inmunofenotipificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
18.
Med Oncol ; 39(7): 109, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578067

RESUMEN

TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.e., TPEN ED50: 3.2 µM and TPGS ED50: 34 µM, potency ratio R = 10.62 = TPGS (ED50)/TPEN (ED50)) were identified as dose-effect curve (%DNA fragmentation (sub-G1 phase) versus agent concentration). The most effective synergistic doses were determined according to isobole analysis. The apoptotic and oxidative stress effects of combined doses (TPEN 0.1, 0.5, 1 µM) and TPGS (5, 10, 20 µM)) were evaluated by DNA fragmentation (sub-G1 phase), mitochondrial membrane potential, oxidation of stress sensor protein DJ-1, and activation of executer protein CASPASE-3. They testified to the synergistic effect of the T2 combo (e.g., TPEN 1: TPGS 20, combination index (CI) 0.90 < 1; 1/3.2+ 20/34, > 90% induced apoptosis) in all 3 cell lines. As proof of principle, we challenged complete bone marrow (n = 5) or isolated cells from bone marrow (n = 3) samples from acute pediatric acute B-cell patients and found that T2 combo (1:20; 10:200) dramatically reduced (- 50%) the CD34+/CD19+cell population and increased significantly CD19+/CASP-3+ positive B-ALL cells up to 960%. The T2 combo neither induced DNA fragmentation, altered ΔΨm, nor induced oxidation of stress sensor protein DJ-1, nor activated CASP-3 in PBL cells. We conclude that by using different combinations of TPEN and TPGS, a more efficient treatment strategy can be developed for leukemia patients.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide Aguda , Apoptosis , Niño , Etilenodiaminas , Humanos , Células Jurkat , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Transducción de Señal , Vitamina E
19.
Environ Toxicol ; 37(3): 660-676, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34897981

RESUMEN

It is increasingly evident that LRRK2 kinase activity is involved in oxidative stress (OS)-induced apoptosis-a type of regulated cell death and neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that a phenolic-rich extract of avocado Persea americana var. Colinred peel (CRE, 0.01 mg/ml) restricts environmental neurotoxins paraquat (1 mM)/maneb (0.05 mM)-induced apoptosis process through blocking reactive oxygen species (ROS) signaling and concomitant inhibition of phosphorylation of LRRK2 in nerve-like cells (NLCs). Indeed, PQ + MB at 6 h exposure significantly increased ROS (57 ± 5%), oxidation of protein DJ-1cys106SOH into DJ-1Cys106SO3 ([~3.7 f(old)-(i)ncrease]), augmented p-(S935)-LRRK2 kinase (~20-f(old) (i)ncrease), induced nuclei condensation/fragmentation (28 ± 6%), increased the expression of PUMA (~6.2-fi), and activated CASPASE-3 (CASP-3, ~4-fi) proteins; but significantly decreased mitochondrial membrane potential (ΔΨm, ~48 ± 4%), all markers indicative of apoptosis compared to untreated cells. Remarkably, CRE significantly diminished both OS-signals (i.e., DCF+ cells, DJ-1Cys106SO3) as well as apoptosis markers (e.g., PUMA, CASP-3, loss of ΔΨm, p-LRRK2 kinase) in NLCs exposed to PQ + MB. Furthermore, CRE dramatically reestablishes the transient intracellular Ca2+ flow (~300%) triggered by dopamine (DA) in neuronal cells exposed to PQ + MB. We conclude that PQ + MB-induced apoptosis in NLCs through OS-mechanism, involving DJ-1, PUMA, CASP-3, LRRK2 kinase, mitochondria damage, DNA fragmentation, and alteration of DA-receptors. Our findings imply that CRE protects NLCs directly via antioxidant mechanism and indirectly by blocking LRRK2 kinase against PQ + MB stress stimuli. These data suggest that CRE might be a potential natural antioxidant.


Asunto(s)
Maneb , Persea , Apoptosis , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Estrés Oxidativo , Paraquat/toxicidad , Fosforilación , Extractos Vegetales/farmacología
20.
Biomolecules ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34944489

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by functional disruption, death of cholinergic neurons (ChNs) because of intracellular and extracellular Aß aggregates, and hyperphosphorylation of protein TAU (p-TAU). To date, there are no efficient therapies against AD. Therefore, new therapies for its treatment are in need. The goal of this investigation was to evaluate the effect of the polyphenol epigallocatechin-3-gallate (EGCG) on cholinergic-like neurons (ChLNs) bearing the mutation E280A in PRESENILIN 1 (PSEN1 E280A). To this aim, wild-type (WT) and PSEN1 E280A ChLNs were exposed to EGCG (5-50 µM) for 4 days. Untreated or treated neurons were assessed for biochemical and functional analysis. We found that EGCG (50 µM) significantly inhibited the aggregation of (i)sAPPßf, blocked p-TAU, increased ∆Ψm, decreased oxidation of DJ-1 at residue Cys106-SH, and inhibited the activation of transcription factor c-JUN and P53, PUMA, and CASPASE-3 in mutant ChLNs compared to WT. Although EGCG did not reduce (e)Aß42, the polyphenol reversed Ca2+ influx dysregulation as a response to acetylcholine (ACh) stimuli in PSEN1 E280A ChLNs, inhibited the activation of transcription factor NF-κB, and reduced the secretion of pro-inflammatory IL-6 in wild-type astrocyte-like cells (ALCs) when exposed to mutant ChLNs culture supernatant. Taken together, our findings suggest that the EGCG might be a promising therapeutic approach for the treatment of FAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/química , Catequina/análogos & derivados , Neuronas Colinérgicas/citología , Presenilina-1/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/toxicidad , Catequina/farmacología , Células Cultivadas , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Mutación , Agregado de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA