Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 86(9): 100129, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442228

RESUMEN

Ultraviolet-C (UV-C) light-assisted water treatment systems are an increasingly investigated alternative to chemical sanitizers for agricultural surface water decontamination. However, the relatively high concentration of particulate matter in surface water is a major challenge to expanding its application in the production of fresh produce. The objective of this project was to test the efficacy of two commercial UV-C devices to reduce the microbial risk of agricultural water in order to develop a web application to assist growers in decision-making related to the on-farm implementation of UV-C technologies for agricultural water treatment. An on-farm study using three agricultural water sources was performed to determine the microbial reduction efficacy of a low power, low flow (LP/LF; 1-9 gallons per minute (GPM), 1.34-gallon capacity) and a high powered, high flow (HP/HF; 1-110 GPM, 4.75-gallon capacity) device at flow rates of 6, 7, and 9 GPM. A threshold of 30% UVT for the HP/HF device was observed, wherein lower water transmissibility significantly impacted microbial inactivation. Although less effective at lower %UVT, the LP/LF device costs less to install, maintain, and operate. The observations were used to design an online tool for growers to calculate the predicted reduction of generic Escherichia coli using either device based on the %UVT of their water source. However, because this study utilized an exploratory and proof-of-concept approach, the experimental flow rates were limited to reflect the capacities of the smaller unit (9 GPM) for direct comparison to the larger unit. Thus, the preliminary model and tool are largely limited to the experimental conditions. Yet, these results of this study demonstrate the utility of UV-C light in reducing the microbial risk of agricultural water, and future studies using different UV-C devices and higher flow rates will expand the use of the decision-making tool.


Asunto(s)
Descontaminación , Rayos Ultravioleta , Recuento de Colonia Microbiana , Descontaminación/métodos , Escherichia coli , Viabilidad Microbiana
2.
Appl Environ Microbiol ; 89(6): e0184322, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222583

RESUMEN

Understanding factors influencing microbial interactions, and designing methods to identify key taxa that are candidates for synthetic communities, or SynComs, are complex challenges for achieving microbiome-based agriculture. Here, we study how grafting and the choice of rootstock influences root-associated fungal communities in a grafted tomato system. We studied three tomato rootstocks (BHN589, RST-04-106, and Maxifort) grafted to a BHN589 scion and profiled the fungal communities in the endosphere and rhizosphere by sequencing the internal transcribed spacer (ITS2). The data provided evidence for a rootstock effect (explaining ~2% of the total captured variation, P < 0.01) on the fungal community. Moreover, the most productive rootstock, Maxifort, supported greater fungal species richness than the other rootstocks or controls. We then constructed a phenotype-operational taxonomic unit (OTU) network analysis (PhONA) using an integrated machine learning and network analysis approach based on fungal OTUs and associated tomato yield as the phenotype. PhONA provides a graphical framework to select a testable and manageable number of OTUs to support microbiome-enhanced agriculture. We identified differentially abundant OTUs specific to each rootstock in both endosphere and rhizosphere compartments. Subsequent analyses using PhONA identified OTUs that were directly associated with tomato fruit yield and others that were indirectly linked to yield through their links to these OTUs. Fungal OTUs that are directly or indirectly linked with tomato yield may represent candidates for synthetic communities to be explored in agricultural systems. IMPORTANCE The realized benefits of microbiome analyses for plant health and disease management are often limited by the lack of methods to select manageable and testable synthetic microbiomes. We evaluated the composition and diversity of root-associated fungal communities from grafted tomatoes. We then constructed a phenotype-OTU network analysis (PhONA) using these linear and network models. By incorporating yield data in the network, PhONA identified OTUs that were directly predictive of tomato yield and others that were indirectly linked to yield through their links to these OTUs. Follow-up functional studies of taxa associated with effective rootstocks, identified using approaches such as PhONA, could support the design of synthetic fungal communities for microbiome-based crop production and disease management. The PhONA framework is flexible for incorporation of other phenotypic data, and the underlying models can readily be generalized to accommodate other microbiome or 'omics data.


Asunto(s)
Microbiota , Micobioma , Solanum lycopersicum , Raíces de Plantas/microbiología , Rizosfera
3.
J Food Prot ; 86(7): 100103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172906

RESUMEN

Cover crops are plants seeded before or after cash crops to improve soil health, reduce weed pressure, and prevent erosion. Cover crops also produce various antimicrobial secondary metabolites (i.e., glucosinolates, quercetin), yet the role of cover crops in moderating the population of human pathogens in the soil has rarely been investigated. This study aims to determine the antimicrobial capacity of three cover crop species to reduce the population of generic Escherichia coli (E. coli) in contaminated agricultural soil. Four-week-old mustard greens (Brassicajuncea), sunn hemp (Crotalaria juncea), and buckwheat (Fagopyrum esculentum) were mixed into autoclaved soil and inoculated with rifampicin-resistant generic E. coli to achieve a starting concentration of 5 log CFU/g. The surviving microbial populations on days 0, 4, 10, 15, 20, 30, and 40 were enumerated. All three cover crops significantly reduced the population of generic E. coli compared to the control (p < 0.0001), particularly between days 10 and to 30. Buckwheat resulted in the highest reduction (3.92 log CFU/g). An inhibitory effect (p < 0.0001) on microbial growth was also observed in soils containing mustard greens and sunn hemp. This study provides evidence for the bacteriostatic and bactericidal effect of particular cover crops. More research regarding the secondary metabolites produced by certain cover crops and their potential as a bio mitigation strategy to improve on-farm produce safety is warranted.


Asunto(s)
Productos Agrícolas , Escherichia coli , Humanos , Suelo , Granjas , Microbiología del Suelo , Agricultura
4.
J Food Prot ; 86(3): 100056, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36916561

RESUMEN

Ultraviolet-C (UV-C) irradiation is a well-recognized technology for improving blueberry postharvest quality, and previous literature indicates that it has the potential for dual-use as an antimicrobial intervention for this industry. However, the practicality and feasibility of deploying this technology in fresh blueberry fruit are significantly hindered by the shadowing effect occurring at the blossom-end scar of the fruit. The purpose of this study was to determine if treating the blueberry fruit within a chamber fitted with UV-Light Emitting Diodes (LEDs) emitting a peak UV-C at 275 nm could minimize this shadowing and result in improved treatment efficacy. Ten blueberry fruits were dip-inoculated with E. coli at a concentration of 105 CFU/mL and irradiated within the system at doses of 0, 1.617, 3.234, 9.702, and 16.17 mJ/cm2 (0, 30, 60, 180, and 300 s). Statistical analysis was performed to characterize the extent of microbial survival as well as the UV-C inactivation kinetics. A maximum of 0.91-0.95 log reduction was observed, which attenuated after 60 s of treatment. The microbial inactivation and survival were thus modeled using the Geeraerd-tail model in Microsoft Excel with the GInaFIt add-in (RMSE = 0.2862). Temperatures fluctuated between 23 ± 0.5°C and 39.5°C ± 0.5°C during treatment but did not statistically impact the treatment efficacy (P = 0.0823). The data indicate that the design of a UV-LED system may improve the antimicrobial efficacy of UV-C technology for the surface decontamination of irregularly shaped fruits, and that further optimization could facilitate its use in the industry.


Asunto(s)
Arándanos Azules (Planta) , Escherichia coli O157 , Frutas , Recuento de Colonia Microbiana , Viabilidad Microbiana/efectos de la radiación , Rayos Ultravioleta
5.
Foods ; 10(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34828940

RESUMEN

Leafy green production in high tunnels (HTs) results in increased yields, improved visual quality, and extended production with polyethylene (poly) film and/or shade cloth coverings. However, altering visible and ultra-violet light with HT coverings may reduce phytochemicals, thus influencing plant pigmentation and taste. The objective of this study was to examine various HT coverings on the sensory perceptions, soil temperature, color, and anthocyanin accumulation of red leaf lettuce. The coverings included standard poly, standard poly with removal two weeks prior to harvest (movable), diffuse poly, clear poly, UV-A/B blocking poly (block), standard poly with 55% shade cloth, and the open field. A highly trained descriptive panel evaluated the samples using a scale from 0 (none) to 15 (extremely high) and determined a list of 20 sensory attributes. The color intensity attribute had the most differentiation between coverings, and the open field was higher (i.e., darker) than the others at 7.5 (p < 0.0001), followed by clear and movable coverings at 6.8, and the shade covering scored a 2. Strong relationships existed between both colorimetric (hue°) and anthocyanin analysis to panelist-based scores (R2 = 0.847 and 0.640, respectively). The initial crispness was similar for movable, standard, diffuse, and block coverings at 5.3 on average, which was higher than the open field at 4 (p < 0.01). The open field lettuce grew under cooler soil temperatures, which may have slowed down maturation and resulted in softer tissue. Based on this study, HT growers can implement specific coverings to cater to markets that value visual quality.

6.
J Food Sci ; 84(8): 2261-2268, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31313301

RESUMEN

The consumer demand for locally grown fresh produce is continuously increasing in the United States. The high tunnel systems have been successfully utilized by small acreage growers for local production. Consumers are typically assessing appearance, freshness, flavor and aroma when purchasing produce. A common perception is that locally grown produce tastes better than nonlocal. However, there is not much evidence for supporting this claim. The objective of this study was to identify consumer acceptability and the sensory characteristics/differences of locally grown spinach in open field or in high tunnel and nonlocal commercially grown spinach. Spinach, Spinacia oleracea cv. "Corvair" was grown in open field and in high tunnel at Kansas State Univ. Olathe Horticulture Research and Extension Center (OHREC) in spring 2017 and the commercially grown spinach was purchased at a local retail store. A consumer study (n = 205) was conducted at Kansas State Univ., Olathe campus, and a descriptive sensory analysis was conducted by a highly trained descriptive analysis panel in the Center for Sensory Analysis and Consumer Behavior at Kansas State Univ., Manhattan campus, in spring 2017. The consumer test showed that high tunnel spinach scored significantly higher in overall liking (P < 0.0001), flavor liking (P < 0.0001), and texture liking (P < 0.05) when compared to open field and store purchased spinach. Descriptive analysis showed that locally grown spinach had higher intensity of attributes that indicate premium quality, such as green color and green/spinach flavors. Our results indicate that locally grown spinach was preferred from the consumers for its high organoleptic quality. PRACTICAL APPLICATION: Locally grown spinach demonstrated high intensity in a set of sensory attributes that suggest a product with premium organoleptic quality. Correspondingly to these results, consumers liked spinach produced locally in high tunnels the most. The results of this study can be used for developing marketing strategies that are aiming specifically to the consumer niche that is seeking fresh produce of high organoleptic quality.


Asunto(s)
Comportamiento del Consumidor , Spinacia oleracea/química , Color , Aromatizantes/química , Aromatizantes/metabolismo , Preferencias Alimentarias , Humanos , Kansas , Odorantes/análisis , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Gusto
7.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30413478

RESUMEN

Root-associated microbes are critical to plant health and performance, although understanding of the factors that structure these microbial communities and the theory to predict microbial assemblages are still limited. Here, we use a grafted tomato system to study the effects of rootstock genotypes and grafting in endosphere and rhizosphere microbiomes that were evaluated by sequencing 16S rRNA. We compared the microbiomes of nongrafted tomato cultivar BHN589, self-grafted BHN589, and BHN589 grafted to Maxifort or RST-04-106 hybrid rootstocks. Operational taxonomic unit (OTU)-based bacterial diversity was greater in Maxifort compared to the nongrafted control, whereas bacterial diversity in the controls (self-grafted and nongrafted) and the other rootstock (RST-04-106) was similar. Grafting itself did not affect bacterial diversity; diversity in the self-graft was similar to that of the nongraft. Bacterial diversity was higher in the rhizosphere than in the endosphere for all treatments. However, despite the lower overall diversity, there was a greater number of differentially abundant OTUs (DAOTUs) in the endosphere, with the greatest number of DAOTUs associated with Maxifort. In a permutational multivariate analysis of variance (PERMANOVA), there was evidence for an effect of rootstock genotype on bacterial communities. The endosphere-rhizosphere compartment and study site explained a high percentage of the differences among bacterial communities. Further analyses identified OTUs responsive to rootstock genotypes in both the endosphere and rhizosphere. Our findings highlight the effects of rootstocks on bacterial diversity and composition. The influence of rootstock and plant compartment on microbial communities indicates opportunities for the development of designer communities and microbiome-based breeding to improve future crop production.IMPORTANCE Understanding factors that control microbial communities is essential for designing and supporting microbiome-based agriculture. In this study, we used a grafted tomato system to study the effect of rootstock genotypes and grafting on bacterial communities colonizing the endosphere and rhizosphere. To compare the bacterial communities in control treatments (nongrafted and self-grafted plants) with the hybrid rootstocks used by farmers, we evaluated the effect of rootstocks on overall bacterial diversity and composition. These findings indicate the potential for using plant genotype to indirectly select bacterial taxa. In addition, we identify taxa responsive to each rootstock treatment, which may represent candidate taxa useful for biocontrol and in biofertilizers.


Asunto(s)
Microbiota , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Solanum lycopersicum/microbiología , Hibridación Genética , Solanum lycopersicum/genética , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...